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Abstract. This paper presents the expected moments algorithm (EMA), a simple and 
efficient method for incorporating historical and paleoflood information into flood 
frequency studies. EMA can utilize three types of at-site flood information: systematic 
stream gage record; information about the magnitude of historical floods; and knowledge 
of the number of years in the historical period when no large flood occurred. EMA 
employs an iterative procedure to compute method-of-moments parameter estimates. 
Initial parameter estimates are calculated from systematic stream gage data. These 
moments are then updated by including the measured historical peaks and the expected 
moments, given the previously estimated parameters, .of the below-threshold floods from 
the historical period. The updated moments result in new parameter estimates, and the 
last two steps are repeated until the algorithm converges. Monte Carlo simulations 
compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically 
weighted moments adjustment, and maximum likelihood estimators when fitting the three 
parameters of the log-Pearson type III distribution. These simulations demonstraie that 
EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as 
maximum likelihood estimation (MLE). The experiments also suggest that EMA has two 
advantages over MLE when dealing with the log-Pearson type III distribution: It appears 
that EMA estimates always exist and that they are unique, although neither result has 
been proven. EMA can be used with binomial or interval-censored data and with' any 
distributional family amenable to method-of-moments estimation. 

1. Introduction 

This paper presents the expected moments algorithm 
(EMA) as an alternative to maximum •ikelihood estimation 
(MLE) or the Bulletin 17B (B17) [United States Water Re- 
sources Council, 1982] method for incorporating historical in- 
formation in flood frequency studies. Use of historical infor- 
mation to improve flood quantile estimates has been 
investigated previously [Leese, 1973; Tasker and Thomas, 1978; 
Condie and Lee, 1982; Condie and Pilon, 1983; Condie, 1986; 
Stedinger and Cohn, 1986; Hosking and Wallis, 1986a, b; Cohn 
and Stedinger, 1987; Lane, 1987; Stedinger and Cohn, 1987; Jin and 
Stedinger, 1989; Wang, 1990a, b; Guo and Cunnane, 1991; Kuczera, 
1992; Pilon and Adamowski, 1993; Frances and Salas, 1994]. 

As with Stedinger and Cohn [1986], we assume there is an 
historical period of N• years. The historical period is a span of 
time for which no systematic gage measurements are available 
yet for which some inference may be made about the flood 
history from other sources. For example, historical i•nformation 
may be available from newspape.r accounts of extraordinary 
floods or from flood lines on buildings. The beginning of the 
"historical period" might correspond to the first year that set- 
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tlers living next to the river would have noted an extraordinar- 
ily large flood. In most cases the historical period would end 
when a stream gage was .installed. During the N•r-year histor- 
ical period, the magnitudes of N• (possibly 0) floods were 
recorded because they were unusually large, greater than a 
known threshold, T. T would correspond to the discharge 
above which some sort of permanent flood record would be 
created, perhaps corresponding to inundation of a town's main 
street. Analogous to the historical peaks, there were also N• 
unmeasured annual peak floods with magnitudes less than T. 
Because the magnitudes of these small annual peaks were not 
recorded (excePt insofar as they did not exceed T), they are 
treated as type I censored observations. Finally, i[ is assumed 
that the historical period is followed by N s years of systematic 
gage record, during which N} > floods were greater than T and 
N• floods were less than T. The magnitudes of all N s system- 
atic-record floods are known. The total record length, N, is 
equal to N s + NH. Figure 1 illus,trates these terms. (Note that 
the definitions here differ from those of B17). 

We denote annual peak floods as {Q•, '", QN} and their 
logarithms as {X•, .-., XN). We assume the logarithms are 
independent and iden.tically distributed and that they obey a 
Pearson type Iii (P-III) distribution with parameters ia,/3, •). 
The properties of this distribution are well known [Matalas and 
Wallis, 1973; Bobee, 1975; Bobee and Robitaille, 1977; Condie, 
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Figure 1. A flood record with both historical and systematic 
data. T = 28 (cubic feet per second), N = 120, No = 100, 
N•= 7, N•= 93, Ns= 20, N} > = 3, andN3: = 17. The 
gray strip indicates censoring during the historical period. 

also recommends using a regionalized skew coefficient; to sim- 
plify the discussion, regionalized skew is not considered here). 
Sample moments of (X} must be computed. But how should 
one incorporate into the analysis the N• below-threshold 
floods whose magnitudes were not recorded? Appendix 6 of 
B17 recommends using moments from the N•: below- 
threshold observations from the systematic record to represent 
the moments of the (X•} floods. Their composite value is 
estimated by use of a weighting factor 

< 
W = < (4) 

Ns 

to compute adjusted moments: 

wzx• + Zx > 
• = •v (5) 

W• (X•- •)2q_ • (X > - 
i• -2- - N- 1 (6) 

N(WZ (X•- /•)3+ Z (X > - /•)3) 
•/= (N- 1)(N- 2)& 3 (7) 

1977; Lall and Beard, 1982; Bowman and Shenton, 1988; Kite, 
1988]. The P-III probability density function is given by 

/3 exp ( /3 
f(xla, /3, •-)= 

x-v) -->0 
/3, •-) = 0 otherwise 

where 

(•) 

r(.) = t --• exp ( - t) at (2) 

Using superscripts and subscripts as above, the set {X} can be 
expressed as the union of four sets: 

{X} = {X•} • {X•} • {X•} • {X•} (3) 

where 

{Xff } logarithms of floods greater than T which occurred 
. during the systematic record and whose magnitudes 

were measured by stream gage; 
{X•} logarithms of "historical floods" greater than T that 

occurred during the historical period; 
{X•:} logarithms of systematic-record floods less than T, 

measured by stream gage; 
{X•} logarithms of historical-period floods smaller than T 

that were not measured at all, except insofar as we 
know their magnitudes did not exceed the threshold T. 

2. Estimating Parameters of the Log-Pearson 
Type III Distribution 

B17 [also see Tasker and Thomas, 1978] recommends using 
the method of moments to fit the parameters of the P-III 
distribution to the logarithms of annual peak discharges. (B17 

where the circumflexes indicate that these parameters are es- 
timators. The P-III distribution's parameters are then esti- 
mated by equating the first three sample moments to the dis- 
tribution's moments and solving for (a,/3, •') 

4 

a = •2 (8) 

sign (•/) (9) 

+ = •- &B (10) 

The p th quantile of the fitted distribution is estimated by 

•fp = •' +/•P-•(&, p) (11) 

where P-•(&, p) is the inverse of the incomplete Gamma 
function [Abramowitz and Stegun, 1964]. In effect, each of the 
below-threshold observations from the systematic record is 
given increased weight to represent the unobserved values, 
{X•}. A similar weighting approach is employed by Wang 
[1990a, b] to compute L-moments-based flood estimates. 

Apparently, the B17 historic adjustment was developed to 
address two specific circumstances that can arise in flood fre- 
quency studies: (1) the presence of a huge flood in a relatively 
short systematic gage record (for example, a community expe- 
riencing a flood may know that it is the largest to have occurred 
in a hundred years, even though the gage record extends back 
only 20 years old) and (2) the knowledge that a very large flood 
had occurred, usually prior to the beginning of systematic gag- 
ing, that was not part of the systematic gage record. 

It can be inferred from the B17 method and from the dis- 

cussion in B17 that the B17 adjustment was designed primarily 
to make fiood-quantile estimates consistent with "community 
experience" in such cases (W. H. Kirby, oral communication, 
1995). 

Recently, Stedinger and Cohn [1986] showed that much of 
the information contained in an historical flood record is con- 

nected with knowing the number of exceedances of the thresh- 
old rather than in knowing the magnitudes of the "historic" 
floods. Even the knowledge that no "historic" floods occurred 



COHN ET AL.: ALGORITHM FOR MOMENTS-BASED FLOOD QUANTILE ESTIMATES 2091 

during the historical period provides information that can im- 
prove the accuracy of flood quantile estimates. The B17 ad- 
justment was not designed to make use of threshold- 
exceedance information, and thus alternative methods are 

needed to exploit this kind of data. 
One alternative method is likelihood-based fitting, which has 

been found to be statistically efficient, though often computa- 
tionally difficult, for many distributions [Bobee, 1975; Bobee 
and Robitaille, 1977; Condie, 1977; Bowman and Shenton, 1988; 
Stedinger and Cohn, 1986]. Fitting the P-III distribution by 
maximum likelihood requires a numerical search for a local 
maximum of the likelihood function (the global maximum cor- 
responds to nonsense estimates; for a < 1 the likelihood func- 
tion is unbounded in the limit as q, approaches the smallest 
(largest when/3 < 0) observation). Condie and Pilon [Condie 
and Pilon, 1983; Condie, 1986] describe an interval-bisection 
algorithm following algebraic simplification of the likelihood 
equations and report encountering no failures to obtain MLE 
estimates in a Monte Carlo study. However, even without the 
complication of censored data, many researchers have had 
trouble fitting the P-III distribution by maximum likelihood. 
Bowman and Shenton [1988, p. 155] note that the properties of 
"maximum likelihood estimators perhaps have little advantage 
over moment estimators from the viewpoint of the existence of 
moments." Researchers have had difficulty finding any plausi- 
ble local maximum [Rao, 1986] or report failures in their nu- 
merical optimization methods [Matalas and Wallis, 1973]. Hi- 
rose [1995] presents an algorithm that reportedly finds all local 
MLEs wherever they exist. However, he reports that frequently 
no local MLE exists for small samples. Hirose also shows that 
more than one local maximum can exist for a given sample. In 
this paper we present a simple and efficient moments-based 
alternative that avoids these complications. 

3. The Expected Moments Algorithm 
The expected moments algorithm (EMA) is an adaptation of 

Schmee and Hahn's [1979] iterated least squares (ILS) method 
for fitting regression models to censored data [also see Chat- 
terjee and McLeish, 1986; Yates, '1933; Allan and Wishart, 1930]. 
EMA and ILS are related to Dempster et al.'s [1977] expecta- 
tion-maximization (EM) algorithm. The algorithm employs the 
following steps: 

1. Initialization: Estimate initial sample moments, (•, 
•h), from {Xs}. 

2. EMA step 1' For i = 1, 2,..-, estimate parameters 
(ai+•, /3i+•, 3i+•) from previously estimated sample mo- 
ments: 

4 

-- /3i+ 1 = sign (•i) ai +1/ 
7/'i+1-- •[,i- •i+1/3i+1 (14) 

3. EMA step 2: Estimate new sample moments (•i+ •, 
ai+ l, •i+l)' 

5;XJ+ 5;X >+ < < N?,E[X?,] 
•i+l = N (15) 

where E[X•] is the conditional expectation of X given that 
X < Y, where Y = log (T) on the basis of current parameter 

values (•i, •3i, 3i)' The expectation can be expressed in terms 
of the incomplete Gamma function, F(y, a)' 

F /3 ,ot+l 

= q,+ /3 (y_q-) (16) F /3 
where 

f0 y F(y, a) = t "-• exp ( - t) dt (17) 

The P-III distribution generally has either a lower or upper 
bound. As a result, an observation may lie outside the support 
of a fitted P-III distribution, which occasionally happens when 
fitting systematic data by method-of-moments or L moments. 
Although this circumstance would suggest a lack of fit, it does 
not interfere with most moments-based fitting procedures. 
However, when this situation arises with censored data (be- 
cause T, the upper bound for a censored observation, is below 
the lower bound for the fitted distribution), special steps must 
be taken, and it is not obvious how EMA should compute 
expected moments. In this research, moments (only for the 
current iteration of EMA) were computed by treating the 
censored observation as a systematic observation of magnitude 
T. 

The second and third central moments are estimated by 

•'/2+1 -- {c2( • (X• - •[,t+l) 2 -I- Z (X > - •[,i+1) 2) 

where 

+ N•E[ (X• - •,,+ 1)2]}/N (18) 

NJ + N > 
c2 = N• + N >- 1 (19) 

is a bias-correction factor ensuring that EMA coincides with 
B17 when N H = 0, 

•i+1-- {C3( • (X•- •[,/+1) 3 -I- • (X >- •[,/+1) 3) 

+ N•E[(X•- •i+•)3])/Na•+l (20) 

with corresponding bias correction factor, 

(N• + N>) 2 
C3-- (N• + N >- 1)(/• + N >- 2) (21) 

and 

E[ (X•- •)" a, /3, q,] = E[(X- •)" X < Y, a, /3, 

_ p /3 ' 
y-q- 

F /3 
4. Convergence Test: Iterate EMA steps 1 and 2 until 

parameter estimates converge. 

4. Performance of the Expected Moments 
Algorithm 

Monte Carlo experiments were conducted to determine 
EMA's performance with various combinations of Ns, NH, T, 
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Figure 2. Distribution of fro.99 for N s = 20 to N s = ] 000, 
with N u = 0 and skew = ].0. 

and population shape parameter, a (or skew = sign (/3) x 
2/al/2). For each set of parameters, 100,000 replicate samples 
were generated and fitted. EMA converged rapidly for every 
sample, usually in fewer than 10 iterations. 

As with Stedinger and Cohn [1986], performance was mea- 
sured in terms of bias and variance of Xo.99 , the logarithm of 
the 100-year flood. •0.99 has two distinct advantages over 
00.991 •0.99 is invariant with respect to /3 and z, so these 
population parameters could be arbitrarily set to/3 - 0.5 and 
•- - 0.0; and the variance of •0.99 is nearly inversely propor- 
tional to record length, which permits summarizing results in 
terms of effective record length and average gain. In any case, 
the characteristics of 00.99 can be easily inferred by imagining 
a logarithmic vertical axis on the box plo•ts. 

Figure 2 contains boxplots of EMA's Xo.99 as a function of 
Ns when no historical information is available. As with the 
other figures in this paper, Figure 2 illustrates the case {a = 4, 
/3 = 0.5, z = 0} for which the true value of the logarithm of the 
100-year flood is Xo.99 "- 5.02. Because N•r = 0, EMA (and 
B17) collapses to the standard method-of-moments estimator. 
EMA was found to be negatively biased for all Ns, although 
the bias appears to be substantial only for Ns -< 50. This bias 
may be explained by the well-understood bias in estimating 
skewness from small samples [Bobee and Robitaille, 1977; Lall 
and Beard, 1982]. Although correcting for bias in skewness is 
not considered in this paper, in practice it might be desirable to 

do so (see Stedinger [1980] for discussion on whether to correct 
for bias). 

Figure 3 plots the inverse of the variance of •0.99 as a 
function of Ns, which is seen to be nearly linearly proportional 
to Ns. When discussing estimators which use historical infor- 
mation, it is convenient to express their efficiency in terms of 
an equivalent number of years of systematic record. This is 
called "effective record length" and is denoted Nef f . Nef f can be 
thought of as the "value," measured in years of systematic 
record, of the specified combination of systematic and histor- 
ical information. Nef f is estimated by 

Var [Y(0.99 Ns = 50, Nu = 0] 
Nef f = 50 Var [•0.991Ns, Nu] (23) 

Figure 4 shows the Nef f of•1•o.99 as a function of total record 
length when Ns = 50. The figure contains results for five 
censoring threshold probabilities (Pt - 0.000, 0.500, 0.900, 
0.990, 0.999). Pt - 0.000 corresponds to no censoring. 
When Nu - 1000 and Pt = 0.990, Nef f is greater than 500 
years, yet only 10 historical floods are expected to be greater 
than T. This is a substantial increase! 

For a given censoring threshold and skew, the relation be- 
tween Nef f and N•r can be approximated by 

Neff = Ns + 3•Nu (24) 

Stedinger and Cohn [1986] call ,• the "average gain" of the 
estimator. 

Table 1 reports ,• as a function of Pt, the threshold nonex- 
ceedance probability, for six flood populations {skew = _+0.2, 
_+0.5, _+1.0}; ,• equals unity if all observations are expected to 
exceed the censoring threshold and zero if no observations are 
expected to exceed the threshold. For those cases in which 
some observations are expected to exceed the threshold, ,• is a 
measure of the information content of 1 year of historical 
period length relative to 1 year of systematic gage record. 

5. Binomial and Interval Censoring 
In some cases the logarithm of a flood's magnitude is known 

only to lie within an interval [ Yi, Y u], where -• -< Y i < X < 
Yu -< •. This is known as "interval censoring." A special case 
of interval censoring, known as "binomial censoring" [Stedinger 
and Cohn, 1986], is said to occur when the exact magnitude of 
an historical flood is unknown except that it exceeded a lower 
threshold, T l. 
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Figure 3. The inverse variance of •0.99 as a function of total record length, with Nu = 0 and skew - 1.0. 
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Figure 4. Nef f as a function of total record length and Pt, the threshold nonexceedance probability, for 
Ns = 50. 

EMA can be generalized to employ binomial or interval 
censored data by replacing (22) with 

E[(X- •L) p o/, /3, T] = E[(X- •)P ¾1 < X < ¾u, or, 13, 

-- E •3J( T -- •)P-J 
/=0 

F /3 ,a+j F /3 ,a+j 
ß (25) 

F /3 ,a -F /3 
Figure 5 shows Nef f for binomial-censored data when Ns = 
50. Comparing Figures 4 and 5 for the case where the censor- 
ing threshold is at the 100-year flood line (that is, Y = X0.99 ) 
reveals that in some cases the binomial-censored data can 

provides nearly as much information as the censored data. This 
is consistent with the findings of Stedinger and Cohn [1986]. 
However, the value of binomial-censored data declines as the 

distance between Y and Xp increases. Table 2 reports the 
average gains for binomial-censored data corresponding to a 
50-year systematic record and 200 years of historical record: 
the same cases reported in Table 1 for censored data. The 
gains are much smaller except when the threshold is at the 
100-year flood line, and the average gain was found to be 

Table 1. Average Gains of Estimators 

PT 

Skew 0.900 0.990 0.999 

4 -1.00 0.91 0.77 0.33 
16 -0.50 0.88 0.59 0.20 

100 -0.20 0.81 0.35 0.14 
100 0.20 0.73 0.25 0.11 
16 0.50 0.73 0.38 0.13 
4 1.00 0.71 0.40 0.12 

Average gains are estimated by X = (50/200){[(Var [•0.991Ns = 50, 
Nu = 0])/(Var [Xo.99[Ns = 50, Nu = 200)] - 1}. For example, 
the average gain for skew of -1.00 and Pr = 0.990 is 0.77, which 
means that the increase in effective record length attributable to 200 
years of historical period would be about 154 years. 

negative, indicating a reduction in precision, for Pt - 0.900 
and skew of -1.0. 

6. Comparisons With Other Estimators 
Monte Carlo experiments were conducted to determine the 

relative performance of several flood-frequency estimators: (1) 
the expected moments algorithm (EMA), (2) the Bulletin 17B 
(B17) historical adjustment, (3)L Moments (LMOM), and (4) 
(local) maximum likelihood estimation (MLE). EMA and B17 
are discussed above. LMOM is the standard L-moments esti- 

mator [Hosking, 1991] and was applied only to the case N, = 0. 

6.1. Maximum Likelihood Estimation 

MLE estimates were derived from the standard likelihood 

function for censored data [Stedinger and Cohn, 1986]' 

L = I-[ f(xl 13, ,) I-[ f(X;, 13, ,) ,) 
(26) 

where F( la, /3, r) is the cumulative distribution function 
corresponding to f( l a,/3, r). A quasi-Newton method (In- 
ternational Mathematical and Statistics Library, Inc. (IMSL) 
[1987] subroutine DBCONF) was used to search for the max- 
imum of L. The method failed to find a local maximum for 

approximately 5% of the generated samples when a = 4. In 
these cases the MLE outcome was discarded, which may have 
produced bias in the MLE box plots because they are based on 
a (nonrandom, 95%) subset of the Monte Carlo samples. For 
a > 4 the MLE failure rate was much higher. To avoid com- 
parisons where the MLE failed to converge, the comparisons 
among estimators considers only the case a = 4 and relatively 
large sample sizes. 

6.2. Frechet-Cramer-Rao Bounds 

Frechet-Cramer-Rao (FCR) bounds [Condie and Pilon, 
1983; Pilon and Adamowski, 1993] were computed because 
they provide an estimate of the asymptotic variance of MLE 
estimators and can provide a lower bound on the variance of 
an estimator if certain regularity conditions are satisfied. Hatter 
and Moore [1967] discuss regularity conditions for the P-III 
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Figure 5. Nef f of binomial-censored data estimator as a function of total record length and Pt, the threshold 
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distribution. The FCR bound on the variance off•0.99 is given 
by 

where 

and 

VFCR = G' FiG (27) 

I = -E 

02 In (L) 02 In (L) 02 In (L) 
0Or2 0Or 0/3 0Or 

021n(L) 021n(L) 021n(L) 
OOt 0/3 0/3 2 0/3 

0 2 In (L) 02 In (L) 02 In (L) 
0Or 0'r 0/3 0'r 0, 2 

(28) 

0X0.99] 

G: 0X0.99 (29) 
0Xo.99 

O'r J 

The partial-derivative terms are given by Harter and Moore 
[1967]. To represent the FCR results as a box plot along with 
the samples obtained by Monte Carlo analysis of the other 

Table 2. Average Gains of Binomial Censored Data 
Estimators 

PT 

c• Skew 0.900 0.990 0.999 

4 - 1.00 -0.03 0.22 0.06 
16 -0.50 0.10 0.39 0.11 

100 -0.20 0.18 0.38 0.13 
100 0.20 0.24 0.36 0.11 
16 0.50 0.25 0.33 0.10 
4 1.00 0.24 0.33 0.09 

Average gains are estimated by X = (50/200){[(Var [f•0.99]Ns -- 50, 
N• = 0])/(Var [X0.991N x - 50, N H = 200)] - 1}. For example, 
the average gain for skew of -1.00 and Pt = 0.990 is 0.22, which 
means that the increase in effective record length attributable to 200 
years of historical period would be about 44 years. 

estimators, a pseudo-FCR sample was generated to represent 
a normally distributed and unbiased estimator with the FCR 
variance. The pseudosample values were 

XFC R =X099-f-VFCR1/2(I)-i( i ) (30) " ' 10001 

i= 1,''' 10000 

where cI)-•( ) is the inverse of the standard normal cumula- 
tive distribution function. 

6.3. Monte Carlo Results 

Ten thousand random samples were generated. As in the 
previous experiments, the performance of each estimator was 
measured in terms of the bias and variance of •0.99' 

Figure 6 uses box plots to compare MLE, EMA, B17, and 
LMOM for Ns = 30 and N•r = 0. The variance of each 
estimator slightly exceeds the FCR bound. Only EMA and 
B17, which are identical when N•r - 0, exhibit substantial 
bias. 

Figures 7 and 8 compare FCR, MLE, EMA, and B17 for 
Pr = 0.90 and Pr = 0.99, respectively, when Ns - 30 and 
N•r = 1000. The expected number of threshold exceedances, 
N•, is 100 for the case illustrated in Figure 7. Although these 
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3.0 
F'CR MLE EMA B17 LMOM 

Figure 6. Distribution of •'•r0.99 for FCR, MLE, EMA, B17, 
and LMOM when Ns = 30 and NH = 0. 
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Figure 7. Distribution of •[r0.99 for FCR, MLE, EMA, and 
B17 when the threshold nonexceedance probability Pt = 
0.90, Ns = 30, and NH = 1000. 

figures illustrate the case of an extremely rich data set, histor- 
ical flood data extending back several hundred years are not 
unusual [Stedinger and Baker, 1987; O'Connor et al., 1994]. In 
this case the estimators perform nearly identically. However, 
where E[N•] is smaller, as in Figure 8 where E[N•] - 10, 
B17 exhibits substantially greater variability, approximately 
four times higher variance, than do the other estimators. This 
result is of practical significance because the threshold corre- 
sponding to paleoflood data is often at or above X0.99. 

7. Conclusions, Cautions, and Future Research 
EMA offers a straightforward method for incorporating his- 

torical flood information into flood frequency studies. By mak- 
ing use of threshold-exceedance information, EMA achieves 
greater efficiency than the B17 adjustment, nearly achieving 
the efficiency of maximum likelihood estimation while avoid- 
ing MLE's numerical complications. Because EMA employs 
the method of moments, it is compatible with all of the features 
of the current B17 guidelines. Future work will need to address 
development of confidence intervals for design events, among 
other issues. 

One must be cautious, however. EMA employs types of 
information (knowledge of the discharge corresponding to an 

7.0 

3.0 
FCR MLE EMA B1 7 

Figure 8. Distribution of f(0.99 for FCR, MLE, EMA, and 
B17 when the threshold nonexceedance probability Pt = 
0.99, Ns = 30, and NH = 1000. 

exceedance threshold, the exact number of threshold ex- 
ceedances, and the value of Nn) that have not traditionally 
been collected. Our ability to provide such data for historical 
periods, and to assure their quality, has yet to be established. 
Use of unreliable historical information may degrade rather 
than improve flood-frequency estimates [Hosking and Wallis, 
1986b; National Research Council, 1988; Kuczera, 1992]. 
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