Appendix S1 – Details of Meta-Analysis

In the meta-analysis there are \(k \) chromosomes and for each chromosome a parameter \(\mu \) is estimated.

The value of \(\mu \) may vary between chromosomes so that the \(i \)th chromosome true value is \(\mu_i \), and this is estimated as \(\hat{\mu}_i \), with sampling error \(\text{var}(\hat{\mu}_i - \mu_i) = s_i^2 \). Let \(\Delta^2 = \text{var}(\mu_i - \mu) \) be the variance between chromosome parameter estimates, where \(\mu \) is now the mean value over chromosomes.

Each estimate \(\hat{\mu}_i \) is then an independent estimate of \(\mu \) with sampling error \(\Delta^2 + s_i^2 \). The best estimate of \(\mu \) is then \(\hat{\mu} = \sum_i w_i \hat{\mu}_i \), where \(w_i^* = \left(\Delta^2 + s_i^2 \right)^{-1} \), with \(s.e.(\hat{\mu}) = \left(\sum w_i^* \right)^{-\frac{1}{2}} \). This requires an estimate of \(\Delta^2 \) to use in the weighting. Following DerSimonian and Laird (1986), the statistic \(Q_w = \sum_i w_i (\hat{\mu}_i - \bar{\mu}_w)^2 \) is used, where \(\bar{\mu}_w = \sum_i w_i \hat{\mu}_i / \sum w_i \) and \(w_i = s_i^2 \) (note that \(\bar{\mu}_w \) is also an estimate of \(\mu \) but using sub-optimum weighting \(w_i \), not \(w_i^* \). Since \(E(Q_w) = (k-1) + m\Delta^2 \), where

\[
m = \frac{\sum_i w_i^2}{\sum_i w_i^*},
\]

equating the observed \(Q_w \) with its expectation provides an estimate of \(\Delta^2 \),

\[
\hat{\Delta}_w^2 = \max \left\{ 0, \frac{Q_w - (k-1)}{\left[\sum_i w_i - \left(\frac{\sum_i w_i^2}{\sum_i w_i^*} \right) \right] \} \right\}, \tag{S1}
\]

The maximisation step in (S1) provides an estimate of \(\Delta^2 \) with lower mean square error should \(\hat{\Delta}_w^2 < 0 \). This value is then used to calculate \(w_i^* \), \(\hat{\mu} \) and \(s.e.(\hat{\mu}) \) as described above.