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Abstract

Forest age, which is affected by stand-replacing ecosystem disturbances (such as forest
fires, harvesting, or insects), plays a distinguishing role in determining the distribution
of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net
primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C
(living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are
summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of
variability in NPP, NEP, and C pools are provided for each biome-age class combination
and the sources of variability are discussed. Aggregated biome-level estimates of NPP
and NEP were higher in intermediate-aged forests (e.g., 30-120 years), while older forests
(e.g., >120 years) were generally less productive. The mean NEP in the youngest forests
(0-10 years) was negative (source to the atmosphere) in both boreal and temperate
biomes (0.1 and -1.9Mg Cha 'yr ', respectively). Forest age is a highly significant
source of variability in NEP at the biome scale; for example, mean temperate forest NEP
was —1.9, 4.5, 2.4,1.9 and 1.7 Mg Cha! y1:’1 across five age classes (0-10, 11-30, 31-70, 71—
120, 121-200 years, respectively). In general, median NPP and NEP are strongly correlated
(R?=0.83) across all biomes and age classes, with the exception of the youngest
temperate forests. Using the information gained from calculating the summary statistics
for NPP and NEP, we calculated heterotrophic soil respiration (R};,) for each age class in
each biome. The mean R, was high in the youngest temperate age class
(9.7MgCha 'yr ") and declined with age, implying that forest ecosystem respiration
peaks when forests are young, not old. With notable exceptions, carbon pool sizes
increased with age in all biomes, including soil C. Age trends in C cycling and storage
are very apparent in all three biomes and it is clear that a better understanding of how
forest age and disturbance history interact will greatly improve our fundamental
knowledge of the terrestrial C cycle.
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Introduction

Globally, forests store vast pools of carbon (C) and even
small shifts in the balance between photosynthesis and
ecosystem respiration can result in a large change in the
uptake or emission of carbon dioxide (CO,) from forests
to the atmosphere. Tropical, temperate, and boreal
forests cover about 4.1 billion hectares of the earth’s
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land surface, with forest ecosystems containing up to
80% of all aboveground terrestrial carbon (C) and
~ 40% of all belowground terrestrial C (Dixon, 1994).
Rates of both plant production and decomposition are
related to latitudinal climatic gradients spanning the
poles to the equator (Reich & Bolstad, 2001). However,
the net C accumulation by an ecosystem over the
decadal time frame depends more heavily on time since
disturbance than on climate (Chapin et al., 2002). Large
quantities of C stored in forest ecosystems for decades
to centuries can be released to the atmosphere over
short time steps following disturbance (Schulze et al.,
2000; Page et al., 2002; Korner, 2003). Therefore, net C
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accumulation by forest ecosystems depends fundamen-
tally on forest age (i.e. time since disturbance) and
natural disturbance regimes, and land-use practices
play a key role in regulating C cycling and storage
(Houghton, 2001). The objectives of this mini-review
were: (1) to synthesize C pools and fluxes by age class
for the boreal, temperate, and tropical forest biomes;
and (2) to empirically model biome changes in pools
and fluxes over time in order to better understand the
overall role of disturbance in the regulation of global
forest C cycling and storage.

Rates of forest net primary productivity (NPP; gross
photosynthesis minus plant respiration) and net eco-
system productivity (NEP; gross photosynthesis minus
ecosystem respiration) change over the course of stand
development. Younger forests are inherently more
productive than older forests (Ryan et al., 1997) and
models clearly predict that successional changes in
NPP influence rates of NEP through time (Thornton
et al., 2002). The ideal approach to understanding age-
dependent trends in NEP is the simultaneous study of a
carefully selected age sequence of stands, the so-called
chronosequence approach. However, at the biome level,
this approach is inevitably limited by the cost of
establishing the many replicate chronosequences ne-
cessary to understand biome variability and by the
elapsed sampling time needed to sort out disturbance-
related trends in NEP from interannual variability in
NEP caused by short-term climatic variability.

Disturbance also has a large impact on ecosystem C
storage. Beginning with the succession of vegetation
following disturbance, forest ecosystems can accrue C
in four major pools: vegetation, coarse woody debris
(CWD), organic soil horizons, and soil. The four pools
of C in forest ecosystems are rarely discrete, individual
pools are sometimes absent (e.g. organic soil horizons,
CWD), and intraecosystem transfers among pools occur
on a variety of time steps as forests mature. Periods of C
accrual following disturbance typically range from
decades to millennia and depend greatly on the growth
rate (NPP) of the dominant trees and the frequency and
intensity of natural or human-regulated disturbance
regimes. Many trees have long average life expectancies
(>100 years) and most wood and many leaves/
needles/small roots are naturally resistant to decay.
Thus, pools of total ecosystem C in mature forests
can be impressive, routinely ranging from 100-200
MgCha !, and sometimes exceeding 500MgCha '
(Janisch & Harmon, 2002). Because vast quantities of
C are stored in forests over long periods of time, the
global management of forest C reserves has become
quite controversial as nations and multinational cor-
porations struggle to balance their internal economic
and social agendas against the realization that combus-

tion of fossil fuels and land-use practices are altering
the Earth’s climate system (Schulze ef al., 2002).

Our underlying hypothesis is that disturbance (time)
trends are so fundamental in regulating NPP, NEP, and
C storage that they will be apparent at the biome level
in spite of the tremendous variability in C pools and
fluxes at this scale. In other words, the modeled age
trends apparent across an individual chronosequence
(Thornton et al., 2002) should be apparent at the biome
scale where sufficient data are available to model biome
age trends. We also discuss the pitfalls of our synthesis
and emphasize statistical variability in C pools and
fluxes. Most biome-level reviews of forest C cycling and
storage produce estimates averaged across age classes
(but see Schulze et al., 1999) and many lack statistical
estimates of variability and information on one or more
storage pools, typically CWD and soil C; thus, it has
been difficult to appreciate the overall effect of
disturbance (age) on biome pools and fluxes of C. By
synthesizing global information on forest NPP and
NEP, we were able to calculate age trends in hetero-
trophic soil respiration (Ry,) for each biome.

Methods

Database compilation

Our database includes information pertaining to carbon
pools (C in the total ecosystem, living biomass, CWD,
organic soil horizons, and soil) and carbon fluxes (NPP
and NEP) for the boreal, temperate, and tropical biomes
(Appendix A). It includes deciduous, coniferous, and
evergreen species encompassing a broad range of stand
ages and geographic locations. We deliberately in-
cluded both managed and unmanaged forests as well
as studies that incorporated varying methodologies in
order to acquire the broadest possible array of data. The
entire database is comprised of approximately 1200
entries, taken from 120 references, 15 of which are
chronosequence studies. The primary decisive factor
for including data was availability in the peer-
reviewed, open literature, and sufficient documentation
of the field measurements as well as the age and
location of the stand under consideration. Review
papers that followed these same guidelines are also
included (e.g., Harmon et al., 1986; Gower et al., 1994;
Clark et al., 2001; Gower et al., 2001; Law et al., 2002).
Those papers that estimated the above parameters
based primarily on models were excluded. None of the
data reported come from unpublished sources. The
data were summarized as reported and no assumptions
or corrections were made to the original data. If more
than one method was applied to estimate a given pool
or flux in a particular study, we used the estimate(s)
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that the authors deemed more accurate. We converted
all the data to standard units, MgCha’1 (pools) or
Mg Cha 'yr~! (fluxes), and when necessary, applied a
conversion factor of 0.5 to estimate the amount of
carbon from a given oven-dry biomass.

The soil C database reports measurements made to
different cumulative depths, including both organic
and mineral soils. No attempt was made to correct soil
C for the depth of measurement, although we recognize
that total soil C increases with depth (Jobbagy &
Jackson, 2000). However, we do report the depth(s) to
which soil samples were collected in Appendix A. We
chose to synthesize organic layer soil horizon data
separately from the underlying soil horizons because
there is a rich literature on C content in the organic soil
horizons (‘forest floor’), and these measurements are
often independent of mineral soil horizon C measure-
ments (i.e. the ‘forest floor” C content is often reported
independently without subsequent reports of the C
content of the underlying soil horizons). We tabulated
organic layer soil horizon pool sizes when these layers
were explicitly identified in the literature and we made
no attempt to reinterpret whether or not the organic soil
horizons were properly identified according to stan-
dard soil survey procedures, which are explained in
Soil Taxonomy (Soil Survey Staff, 1975).

The total ecosystem, living biomass, and NPP data
were restricted to those studies that included actual
measurement of both above- and belowground compo-
nents, and only NPP data reported on a per unit area
basis were utilized. Restricting data in this way should
minimize the effects of changes in stand management
and self-thinning on estimates of NPP. The data
pertaining to NEP primarily include values obtained
via micrometerological techniques (e.g., eddy covar-
iance). Three studies in the database used biometric
methods to calculate NEP, and two of these were
chronosequence studies. We attempted to perform a
thorough review of the literature, but understand that
valuable references may have been unintentionally
omitted. We also recognize that our results depend
fundamentally on the number of observations and the
literature included in the database.

Statistical analyses

The deciduous, coniferous, and evergreen species for
each biome were pooled to attain sufficient data to
examine trends over time. The data were then divided
into five age classes to (1) represent key developmental
periods over the course of forest succession, and (2)
ensure that each age class would generally contain
enough data to perform meaningful statistical analyses.
As such, the age classes for the boreal forest were

slightly different from those for the temperate and
tropical forests to take into account the slower growing
nature of the boreal trees. For example, those data in the
youngest age class for boreal forests range from 0 to 30
years, while those in the temperate and tropical forest
range from 0 to 10 years.

For all the carbon pools and fluxes, summary
statistics by age class and for all age classes combined
were computed and Duncan’s multiple range test was
performed using PROC aNova of the SAS software
(SAS Institute, 1990,version 6.0) to check for significant
differences in the mean values of NEP and NPP across
age classes for a given biome. Empirical nonlinear
functions were then fit to the median values of the
carbon flux and carbon pool data by age groups
(excluding those with two or fewer observations) using
the iterative Gauss-Newton method with specified
ranges of starting values in PROC NLIN of the SAS
software (SAS Institute, version 6.0). In each case,
several different models were tested and compared for
fit using F-tests (Rice, 1995). Plots of the fitted values vs.
the residuals were visually examined for heterosceda-
city to aid in validating the models. The functions were
deliberately not fitted to the mean values of the carbon
pool and flux data because of outliers in many of the
age classes. Details of the precise models implemented
are presented in Table 1.

When we examined the relationship between NEP
and NPP, we removed all biometric estimates of NEP
from the database in order to create NPP and NEP data
sets that were independent in terms of how measure-
ments were taken. Consequently, for this analysis, all
NPP data were developed from biometric ground
measurements through time, while the subset of NEP
data all comes from published eddy flux measure-
ments.

Measurement of heterotrophic soil respiration (Ry,) at
the ecosystem level has been problematic for many
years (Hanson et al., 2000). Nevertheless, because we
developed independent average measurements of NPP
and NEP for different age classes at the biome level, we
were able to calculate average R}, for each age class in
each biome as

Rhagetbiome = NPPageAbiome - NEPage,biome- (1)

Results

Carbon fluxes

NPP. The mean boreal forest NPP across all age classes
was 2.8 (£ 1.6)MgCha 'yr ! and increased from 7.1
(£ 3.5) in temperate forests to 8.3 (£ 5.2) in tropical
forests. NPP peaked at intermediate ages in boreal and
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Table 1 Parameters, sum of squared errors, and P-values from curves fitted to the medians of components of the forest carbon

budgets across five age classes

C budget component Biome Function® a b c SSE' P-value

Living biomass Boreal* Sigm 15134 9306 - 8.8 <0.05
Temperate Hyp 206.0 131.0 - 108.3 <0.05
Tropical Pow 11.69 0.39 - 88.0 <0.05
Boreal' Pow 4.28 0.089 - 02 <0.05

CWD Temperate Mix 161.5 0.094 2.55 98.3 0.08
Tropical Pow 102.3 —0.628 - 40.4 <0.05

Organic soil horizons Boreal Logn 21.91 0.80 1774 25.7 <0.05
Temperate Sigm 8856 3170 - 92.9 <0.05
Tropical Logn 28.45 0.21 183.9 69.2 0.13
Boreal* Mix —219.4 0.201 109.2 427.5 0.20

Soil Temperate Mix 178.6 0.092 52.29 446.7 0.30
Tropical* Hyp 111.0 11.05 - 554.6 <0.05
Boreal Hyp 119.2 8.1 - 1677.9 <0.05

Total ecosystem Temperate Sigm 427786 212025 - 14280 <0.05
Tropical Pow 53.7 0.26 - 446.2 <0.05

NPP Boreal Logn 2.8919 0.7163 66.4462 0.2 <0.05
Temperate Logn 8.0826 0.9850 27.9749 1.4 <0.05
Tropical® - - - - - -

NEP Boreal Logn 2.74376 0.1100 47.6843 0.1 0.13
Temperate' Logn 6.7021 0.1617 38.4328 7.5 0.20
Tropical® - - - - -

NEP vs. NPP All biomes Linear —0.90 0.57 - 0.70 <0.001

*Explanation of functions used: A. Lognormal, “logn’, Y = a x exp{—0.5[In (A/c)/b]*} ; B. Sigmoidal, ‘sigm’, Y = (a x A)/ (A2 + b); C.
Mixed, ‘mixed’, Y = (a/A) + (b x A) + ¢; D. Power, ‘pow’, Y =a x A E. Hyperbolic, ‘hyp’, Y = (a x A)/(b + A), where a, b, and c are

estimated parameters, A is the age of the ecosystem, and Y is the predicted pool or flux.

SSE, sum of squared errors. R? for all models was 0.9 or above, where R? for the nonlinear models is defined as (1—SSE/CSS),

where SSE is the variance of the full model, and CSS (corrected sum of squares) is the variance of the mean model.

These models do not include data from either age class ‘D’ or ‘E’ because of the low number of observations.

SNPP and NEP for the tropical forest were not modeled because of lack of data for most age classes.

“Constants were subtracted and added to the lognormal function when fitting this model to eliminate the constraints imposed on
the tails of the lognormal curve. More precise methods of parameterizing the NEP distribution curve can be found in Euskirchen
et al. (2002). CWD, coarse woody debris; NPP, net primary productivity; NEP, net ecosystem productivity.

temperate forests, but there were insufficient data to
determine whether this trend also occurs in tropical
forests (Fig. 1). In the boreal forest, peak NPP occurred
in the 71-120 years age class, while NPP peaked in the
11-30 years age class in temperate forests. Across all
age classes and biomes, NPP was variable (Fig. 1), with
coefficients of variation ranging from a low of 19%
(boreal forests 120-200 years old) to a high of 117%
(boreal forests 0-30 years old).

NEP. The mean NEP across all age classes was 0.3
(£ 1.1)MgCha7]yr71 in boreal forests, 1.7 (£ 3.2) in
temperate forests, and 3.6 (£ 2.9) in tropical forests.
NEP also peaked at intermediate ages in boreal and
temperate forests and the pattern of NEP through stand
development mirrored that for NPP (Fig. 1). The
youngest age class in boreal forests exhibited mean

rates of NEP that were negative (source to the
atmosphere; —0.1MgCha 'yr™"). The 120-200 years
age class in boreal forests also had a negative rate of
NEP (-0.9MgCha 'yr "), primarily because of a 150-
year-old spruce stand in European Russia, which acted
as a strong carbon source for 3 years in a row
(Milyukova et al., 2002). There were insufficient data
from tropical forests to study the trends in NEP through
time and only one age class is reported (Fig. 1). In
general, rates of NEP across all age classes and biomes
were much more variable than rates of NPP (Fig. 1).
Coefficients of variation ranged from an overall low of
61% in temperate forests 11-30 years old to an overall
high of —1087% in temperate forests 0-11 years old.
Potential explanations for this variability in NEP are
discussed below. Regardless of variability, two
important points are clear (Fig. 1): (1) time trends in
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Fig. 1 Variation in net primary productivity (NPP) and net ecosystem productivity (NEP) (MgCha 'yr~') over time across boreal,
temperate, and tropical forest biomes. Lines are fitted through the medians (horizontal white lines in the interior of the boxplots) of each
age class with associated functions and parameter estimates detailed in Table 1. The height of the boxes is equal to the interquartile
distance with the dotted lines from the top and bottom extending to the extreme values of the data, or a distance of 1.5 x interquartile
distance, whichever is less. The single horizontal lines outside the boxes are the outliers. Age classes, in years, are as follows: for the
boreal biome, A = 0-30; B = 31-70, C =71-120; D = 121-200; E = >200, and for the temperate and tropical biomes, A = 0-10; B = 11-30;

C =31-70; D =71-120; E =121-200.

boreal and temperate NEP follow those of NPP, with a
peak at intermediate ages; and (2) boreal forests,
regardless of age, hover about zero NEP. More studies
are needed in tropical forests, especially young and
middle-aged tropical forests, to determine whether
forests in all three biomes follow the same general
developmental trends through time.

Relationship between NPP and NEP. In general, median
NPP and NEP were strongly correlated across all
age classes and biomes, with one notable exception
(Fig. 2). The highly significant linear relationship
between NPP and NEP depicted in Fig. 2 depends
on the omission of one outlier, the median of NPP
plotted against the median of NEP for the youngest
age class of the temperate forests. In this case, NPP
is around 7MgCha 'yr !, but NEP is negative
(-1MgCha 'yr ") due in large part to high rates of
woody debris decomposition following harvest in
Florida slash pine plantations (Gholz & Fisher, 1982;
Thornton ef al., 2002). This observation agrees with the
overall high variability in NEP for the youngest age
class of the temperate forests (Fig. 1), which we believe
is because of the wide range of management activities
associated with timber harvest and site preparation, as
discussed below.

Heterotrophic soil respiration (R;). Average rates of Ry
(Eqn (1)) range from 1.5 to 3.5MgCha'yr' in boreal
forests (Fig. 3). In temperate forests, rates decline
from 9.7MgCha 'yr ! in the youngest age class to
2.8MgCha 'yr ' in the oldest forests (Fig. 3). Tropical
forests >120 years old exhibit rates of Ry, that average
4.6 MgChzf1 yrf1 (Fig. 3), an amount that is 164%
greater than the same age class of temperate forests.

Carbon pool sizes

Living biomass. Living biomass C increased with age
across boreal, temperate, and tropical forests, as would
be expected (Fig. 4). High variability in temperate
biomass C in the oldest age class (Fig. 4) results from
the inclusion of several studies from the Pacific
Northwestern Region of North America. Living forest
biomass C reaches its peak globally in this region and
many old-growth stands are dominated by massive
trees reaching ages exceeding 400 years (Harmon et al.,
1990). With the exception of this age class (temperate —
old), it is interesting how predictable changes in living
tree biomass are across the age class — biome categories
(Table 1, Fig. 4). There were no studies in the database
for tropical forests 71-120 years old.
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Fig. 2 Relationship between the median values of net ecosys-
tem productivity (NEP) and net primary productivity (NPP)
(MgCha'yr "), with the line representing the fitted linear
least-squares relationship. The solid black point represents the
young age class for the temperate forests, and was not included
in the model. The NEP data represent only those data obtained
via micrometeorological techniques (e.g., as measured by the
eddy covariance method) so that the methods of collecting the
NPP and NEP data are independent. Detailed parameter
estimates are given in Table 1. Age classes, in years, are as
follows: for the boreal biome, A =0-30; B=231-70, C =71-120;
D =121-200; E= >200, and for the temperate and tropical
biomes, A = 0-10; B = 11-30; C = 31-70; D = 71-120; E = 121-200.

Organic soil horizons. Mean and median organic soil
horizon pool sizes increased with age in boreal,
temperate and tropical forests, reaching a peak in the
71 or older age classes (Fig. 4). The standard deviations
within an age class (data not shown) and the box plots
in Fig. 4 clearly demonstrate that organic soil horizon
pool sizes are highly variable across all three biomes.

Soil. The overall mean C content of soil, excluding the
surface organic soil horizons (‘forest floor’), across all
age classes, was 151.6 (£ 175.2), 82.3 ( & 39.5), and 84.2
(+49.6) MgCha’1 for the boreal, temperate, and
tropical forests, respectively. The soil C pools were
highly variable, particularly within the boreal biome.
Across all biomes, there was an overall trend for soil
pool sizes to increase through time (Fig. 4).

CWD. The pool size of CWD across all age classes was
relatively small in boreal forests (mean 7.9 +
75 MgChafl) and accounted for an average of about
5% of the total ecosystem C. The stage of stand develop-
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Fig. 3 R, MgCha 'yr ) calculated from average net primary
productivity (NPP) subtracted from average net ecosystem
productivity (NEP) across all age classes. The error bars are
calculated as Ry = (NPP + ¢NPP)—(NEP + ¢NEP). NEP data
were unavailable for age classes A-D in the tropical biome. Age
classes, in years, are as follows: for the boreal biome, A =0-30;
B=31-70, C=71-120; D=121-200; E= >200, and for the
temperate and tropical biomes, A =0-10; B = 11-30; C = 31-70;
D =71-120; E= >121.

ment appears, on the average, to have little overall
influence on the pool size of CWD in boreal forests
(Fig. 4). The mean pool size of CWD averaged across
all temperate age classes was 42.0 (4 45.8) MgCha !,
or about 18% of the total ecosystem C. Pools of
CWD were much more variable in temperate forests,
especially in the youngest and oldest age classes
(Fig. 4). In the tropics, the mean CWD pool size
across all age classes was 17.5 (4 15.9)MgCha !, or
roughly 10% of the total ecosystem C. The youngest
age class was the most variable pool of CWD in the
tropics (Fig. 4).

Total ecosystem carbon. Total ecosystem C increased with
age in the boreal forest (Fig. 4) and C peaked in the 120-
200 years age class, following the same pattern
described for living biomass. The mean total
ecosystem C across all boreal age classes was 143
(£93)MgCha . Older boreal age classes were more
variable than younger age classes (Fig. 4). Total
ecosystem C also increased with age in temperate
forests (Fig. 4); the mean total ecosystem C across all
temperate age classes was 239 (4 101)MgCha ).
Variability in total temperate ecosystem C was
relatively low through the first four age classes, but
was very high in the oldest age class (Fig. 4), once again
presumably because of the inclusion of several studies
from the Pacific Northwestern Region of North
America, where pools of living biomass and CWD are
high in old-growth forests (Janisch & Harmon, 2002).
The mean tropical total ecosystem C was 174
(+54)MgCha' and total ecosystem C increased
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Fig. 4 Variation in the pools (Mg C ha™ ) of living biomass, organic soil horizons, soil, coarse woody debris (CWD), and total ecosystem
carbon over time across boreal, temperate, and tropical forest biomes. Lines are fitted through the medians (horizontal lines in the
interior of the boxplots) of each age class with associated functions and parameter estimates detailed in Table 1. The height of the boxes
is equal to the interquartile distance with the dotted lines from the top and bottom extending to the extreme values of the data, or a
distance of 1.5 x interquartile distance, whichever is less. The single horizontal lines outside the boxes are the outliers. Age classes, in
years, are as follows: for the boreal biome, A = 0-30; B =31-70, C = 71-120; D = 121-200; E = >200, and for the temperate and tropical

biomes, A =0-10; B =11-30; C = 31-70; D = 71-120; E = 121-200.

with age class (Fig. 4). Variability in the total ecosystem
C was relatively low in tropical forests compared with
temperate and boreal forests, especially when
comparing the older age classes among the biomes
(Fig. 4).

Discussion

Critical appraisal of the data and its limitations

There are numerous problems associated with binning
data collected by a multitude of investigators using
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varying methodologies. One clear example is the data
on soil organic horizons and soil. The soil organic
horizons (‘forest floor’) are technically a part of the soil
profile, and the ‘O layer’ is typically subdivided into
the fibric (Oi), hemic (Oe), and/or sapric (Oa) layers in
the USA (Soil Survey Staff, 1975). However, the ‘forest
floor’ has been variously defined and the distinction
between the forest floor and soil is artificial. Some of the
variability in C pools in the organic soil horizons and
soil that we report is undoubtedly related to how these
layers are defined and reported in the literature. The
distinction in the literature between the forest floor and
soil is particularly problematic for imperfectly and
poorly drained soils. Furthermore, the soil C database
we compiled reports measurements made to different
cumulative depths, including both organic and mineral
soils. Obviously, some of the variability in the soil
organic horizon and soil C stocks we report is simply
because of the way in which we summarized the data
and the different methods of sampling and reporting
soil C in the literature.

The three biomes also contain different proportions
of managed and unmanaged forests. In general, the
temperate forests are more intensively managed than
the tropical and boreal biomes at this time in history.
Controlling species composition, genetic improvement
of growing stock, fertilization, weed control, and
irrigation are all examples of cultural practices applied
ever more frequently in forest plantation culture.
Intensively cultured plantation forests with high rates
of NPP can accumulate C stocks in living biomass in
just a few years, which are typical of mature naturally
regenerated forests in the region (Madeira et al., 2002).

Forests in different regions within a biome are also
influenced by inherently different rates of NPP related
to many site factors such as climate, soil, and drainage.
The life-history attributes of different native and exotic
species can also play an important role in regulating C
storage in living biomass (Jackson et al., 2000). Binning
data across different sites by species combinations add
to the inherent variability within the database and
should mask age-related patterns in C cycling and
storage.

Can we meaningfully interpret the influence of
disturbance (age) on biome-scale C cycling and storage
using such a wide array of information? Our synthesis
and interpretation certainly have limitations; none-
theless, the patterns related to forest age discussed
below transcend all the variability inherent in our
database. The fact that age-related patterns in C cycling
and storage are very apparent, in spite of the caveats we
discuss above, suggest that we need to pay more
attention to the role of disturbance in regulating C
cycling and storage. For example, many of the current

sites in the networks measuring NEP tend to be located
in undisturbed, mature, ‘representative’ forests, but, as
we discuss below, these sites, on the average, have low
rates of NEP compared with younger stands. Ob-
viously, as new data from existing studies become
available we will be able to refine our understanding of
how disturbance regulates C cycling and storage in
forests located along edaphic and climatic gradients.

NPP

Our results demonstrate that the pattern of decline in
forest productivity with age, apparent at the stand level
(Ryan et al., 1997), can be seen in average rates of boreal
and temperate NPP aggregated to the biome level (Fig.
1). Because we only used studies reporting both above-
and belowground NPP data expressed on a per unit
land area basis, these results should be robust in the
face of different stand densities and management
histories. There is some debate about how much more
productive young forests are compared with older
forests, centering on management history, stand den-
sity, and assumptions made in models of forest growth
(Carey et al., 2001; Knohl et al., in press). Our analysis of
NPP makes no assumptions whatsoever and the data
cut across all types of temperate and boreal forests,
including forests that are even-aged and those that are
of mixed ages and species composition from virtually
every habitat ever reported in the literature. None-
theless, the pattern of decline in NPP with age is clear
(Fig. 1), although the reasons for this are not fully
apparent (Ryan et al., 1997).

NEP

Variability in NEP within boreal, temperate, and
tropical forests is high (Fig. 1). Some of this variability
is driven by the same set of factors that drive changes in
photosynthesis (Gu et al., 2003) and plant respiration
(Clark et al., 2003). However, much of the variability in
NEP is related to changes in the factors that drive Ry
(Goulden et al., 1998; Valentini et al., 2000). Hetero-
trophic soil respiration (R,) is regulated by the
enzymatic and metabolic activity of the soil foodweb.
The factors limiting R;, are not the same as those that
limit photosynthesis. The chemical composition of
plant detritus is important in regulating the rate of soil
organic matter decomposition (Cadish & Giller, 1997),
as are soil temperature, soil moisture (including
drainage class), and soil oxygen content.

Different soil environmental conditions, for example,
the depth of thaw in permanently frozen boreal soils,
can also change from year to year, making labile soil C
available for decomposition in 1 year and not the next
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(Goulden et al., 1998). Thus, NPP and NEP are not
always coupled in time. However, in general, median
NEP was strongly correlated to median NPP across all
age classes and biomes (Fig. 2). This makes sense,
because soil microbial metabolism is normally tightly
linked to the availability of labile substrates coming
primarily from leaf and fine root litter and root
exudates (Zak & Pregitzer, 1998; Hogberg et al., 2001).
Ecosystem NEP can only be decoupled from NPP if the
conditions regulating the availability of labile sub-
strates or the environmental conditions limiting micro-
bial enzymatic and metabolic activity somehow change.
Our results suggest that, on the average, this occurs
most routinely just following disturbance, when biome
Ry, is high and median and mean NEP are negative
(source to the atmosphere; Fig. 3).

During the intermediate stages of stand development
when NPP and NEP are highest (Fig. 1), variability in
NEP is lower. Although it is not possible to separate
these sources of variation explicitly given the informa-
tion we currently have available, we can infer that the
390% cv for the young age class is due primarily to the
time since disturbance, when decomposition rates are
high at first and depend on the intensity and type of
disturbance (Chapin et al., 2002; Thornton et al., 2002).
As forests reorganize their internal biogeochemical
cycles and mature (intermediate age classes), NPP
and NEP are high (Fig. 1) and appear to be primarily
responding to interannual climatic variation, favoring
either increased photosynthesis or decreased respira-
tion (Myneni et al., 1997; Schimel et al., 2000). On the
whole, the greatest amount of variability in NEP over
the course of succession appears to be attributable to
time since disturbance rather than interannual varia-
tions in climate or long-term environmental trends
(Chapin et al., 2002), underscoring the importance of
land-use history and forest management practices in
the regulation of global pools and fluxes of forest C.

Heterotrophic soil respiration (Ry,)

Disturbance-induced increases in R, early in succession
appear to be very important in temperate forests, with
mean rates of Ry, at 9.7MgCha 'yr ' in the 0-10-year
age class (Fig. 3). Obviously, any forest management
practice that reduces the pulse of R}, associated with
disturbance will accelerate the development of positive
NEP. We expect that tropical forests will exhibit a
pattern of Ry through time similar to the pattern
exhibited by temperate forests in Fig. 3, with a peak
early in succession and a decline through time, but the
data are insufficient to test this hypothesis at this time.
Because NPP (Fig. 1) and R}, (Fig. 3) decline as forests
age, total ecosystem respiration must also decline

during the later stages of forest succession. If soil
respiration is dominated by plant respiration and
microbial respiration of labile C substrates (Zak &
Pregitzer, 1998; Hogberg et al., 2001), there is no reason
to expect the oldest forests to exhibit the highest rates
of ecosystem respiration as Odum (1969) originally
hypothesized.

Carbon pool sizes

Living biomass. Living biomass C increased through
time, peaking in the 71-120-year age class in boreal
forests, but increasing steadily with age in temperate
and tropical forests (Fig. 4). The older age classes
contained two to 10 times as much living biomass C as
the youngest age class. Boreal biomass C peaks at an
earlier age compared with the temperate or tropical
biomes, presumably because catastrophic wildfire is the
predominant form of disturbance across the boreal
landscape (Kasischke & Stocks, 2000), and because
many poorly drained forests lose tree cover as moss
biomass increases and soil temperature declines during
the advanced stages of forest succession (Van Cleve &
Viereck, 1981).

Organic soil horizons. In many forest soils, surface layers
accumulate, which are rich in organic matter composed
primarily of plant litter in various stages of decay.
These ‘forest floor’ layers are believed to be highly
active in forest C cycling, especially in response to
disturbance (Covington, 1981; Yanai et al., 2003). At the
biome level, it is clear that average forest floor C
contents either remain relatively constant or increase
with age, and median forest floor C reached a peak in
all three biomes after about 70 years of stand
development (Fig. 4). Yanai et al. (2003) review the
reasons why the common assumption of increased
forest floor decay following disturbance may not be
valid in many instances.

Soil carbon. Carbon is stored in soil when it is un-
available for use by microorganisms. The formation
of mineral soil C with a relatively long residence
time (stable or passive soil C) is thought to be
primarily controlled by three mechanisms: (1) chemical
stabilization, (2) physical protection, and (3) biochemical
stabilization (Six et al., 2002). All three of the soil
C stabilization mechanisms co-vary across the land-
scape with changes in soil parent material and
vegetation type. This is one reason why soil C pools
are so variable within a given biome (Fig. 4). Other
factors controlling variability in soil C are soil drainage,
soil temperature, and variability in C inputs through
time. Poorly drained and cold soils accrue significant C
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contents because lack of oxygen and low temperatures
inhibit rates of decomposition. These two phenomena
are much more frequent in boreal forests where pools of
soil C are both high and highly variable because of the
greater frequency of cold and saturated soils (Fig. 4;
Gower et al., 1997, Harden et al., 1997; Chapin et al.,
2002). Labile soil C also cycles back to the atmosphere on
longer time steps in boreal forests compared with
temperate and tropical forests (Trumbore, 2000), which
means that a greater proportion of the total C pool in wet
and cold boreal soils has not been stabilized by one of
the three mechanisms discussed above. This soil C could
be susceptible to further decomposition if the conditions
that currently limit microbial respiration change.
Interestingly, median soil C at the biome level
increased with time (cumulative inputs) in all three
biomes (Fig. 4), a finding contrary to the notion that soil
C contents often vary little through time (Johnson &
Curtis, 2001).

CWD. The factors regulating the decomposition of
CWD are essentially the same as those that regulate Ry,
in the soil: detrital substrate quality, temperature,
moisture, and oxygen content (Wang et al., 2002).
Decomposition of CWD can directly influence how
rapidly forests become sinks for C following distur-
bance (Thornton et al., 2002). Although temperature
and moisture can change following disturbance and
this can accelerate rates of decomposition (Amiro,
2001), changes in the environment probably play a
minor role in regulating CWD pool size compared with
disturbance history. We believe that the amount of
residual CWD following disturbance and its size and
incorporation into the mineral soil play a key role in
defining the wide range of variability in pool sizes in
the youngest age class of forests (Fig. 4). Consequently,

this variability in the youngest temperate age class is
probably because of differences in forest management
activities.

In old forests, the main factor regulating a change in
CWD pool size is the continued recruitment of new
CWD into this pool, not changes in the environmental
factors that drive decomposition during succession or
following disturbance. When old forests are harvested,
it is primarily the storage term (pool size) of CWD that
is altered in subsequent years, not the rate of
decomposition. In other words, the pool declines
primarily because recruitment of new CWD has
halted, not because rates of decomposition are greatly
altered. This is true for the forest floor as well (Yanai
et al., 2003). Eventually, recruitment of significant
amounts of new CWD begins as stands age and pools
of CWD recover. This process explains the bowl-shaped
trend of CWD seen in the temperate forest data (Fig. 4).
High levels of CWD following disturbance in the
youngest age class and in old-growth forests are also
a trend observed in other studies (Spies et al., 1988;
Sturtevant et al., 1997; Janisch & Harmon, 2002). In
boreal forests, CWD dynamics appear to be driven
mostly by stand-replacing wildfires that reoccur on
relatively short time steps (Kasischke & Stocks, 2000);
thus, pool sizes never account for as great a proportion
of total ecosystem C as in temperate forests.

Total ecosystem C. Total ecosystem C pool sizes were
synthesized from sites where all four pools were
directly measured and reported following the criteria
outlined in the methods. In the literature, it is very
common for one or more of the four pools to go
unmeasured at any given study site. Data depicted for
each of the four pools and the ecosystem totals are
somewhat independent because the data come from a

Table 2 Two estimates of total ecosystem carbon (MgCha ') for boreal, temperate, and tropical forest biomes

Boreal Temperate Tropical
Age class Literature Additive Literature Additive Literature Additive
A 67 + 28 161 121 + 27 186 111 £+ 30 125
B 98 + 45 245 106 + 49 169 131 + 63 210
C 214 + 155 171 189 + 58 158 - 178
D 233 + 214 210 240 + 36 248 - 80
E 102 + 23 - 537 + 335 487 253 + 107 328

‘Literature’ refers to averages (and one standard deviation) of independent published field studies of total ecosystem carbon where
all four pools were actually measured at each field site and ‘additive’ is the summation of mean values for the living biomass,
organic soil horizons, soil, and coarse woody debris pools derived from the data compiled in this study. The number of observations
by age class and biome are listed in Table 1. There was insufficient data for age class E of the boreal forests to calculate an ‘additive’
value. Age classes, in years, for the boreal biome are: A = 0-30; B = 31-70, C = 71-120; D = 121-200; E = >200, and for the temperate
and tropical biomes: A = 0-10; B = 11-30; C = 31-70; D = 71-120; E = 121-200.
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variety of different studies, sites, and locations. One
way to check the validity of total ecosystem C is to add
the mean values for each of the four pools and compare
these numbers with the totals actually measured. In
general, totals developed by adding together the mean
pool sizes compare quite well with the totals actually
measured (Table 2). Exceptions include totals in the first
two age classes of boreal forests and the first age class
for the temperate forests (Table 2). For the boreal
forests, this is caused by the fact that total ecosystem C
was measured on a greater proportion of well-drained
sites, while the mean soil C included a greater
percentage of poorly drained sites, sites that accrue
much higher levels of soil C than well-drained boreal
forests (Gower et al., 1997). For young temperate forests
(0-10-year age class), the measured and additive totals
do not compare well because of the large pools of CWD
in some temperate forests following harvest, which
inflates the CWD mean in this age class
(74 + 88MgCha'). These three discrepancies also
point out why we feel it is more appropriate to model
biome changes in time based on median rather than
mean pool size (Table 1, Fig. 4). However, in general,
the measured and additive totals compare rather well
(Table 2), with the exceptions noted.

Conclusions

Biome estimates of NPP and NEP peaked at inter-
mediate ages and declined in the older age classes. NEP
studies in mature forests are not necessarily good
surrogates for young forests that are rapidly increasing
their biomass and accruing C in CWD and soil pools.

Heterotrophic soil respiration (Ry) depends funda-
mentally upon disturbance intensity, with the greatest
amount of R, occurring directly following disturbance
in the youngest age class. Both temperate and boreal
forests in the youngest age class had negative mean
rates of NEP (source to the atmosphere) because rates of
R;, were high. Understanding the processes controlling
Ry, following disturbance is critical to understanding
time trends in NEP.

Total ecosystem respiration is highest when forests
are relatively young and ecosystem respiration declines
during the later stages of succession.

Disturbance history and the age class distribution of
forests within a biome are very important in controlling
rates of C cycling and storage. Additional mechanistic
studies of NEP along chronosequences and historical
reconstructions of land-use change are critical to
improving our fundamental understanding of the
terrestrial C cycle.
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Appendix A

Pools and fluxes of selected components of the forest
carbon cycle for boreal, temperate, and tropical forests
(arranged alphabetically by reference within each
grouping). Pools are in units of MgCha ™', and fluxes
are in Mg Cha'yr~'. An asterisk (*) after the reference
indicates that the data are from a chronosequence
study. When different ecosystem types are reported
within one reference, they are separated by commas.
Mixed ecosystem types (e.g., several different types of
dominant tree species in one ecosystem) are indicated
by a dash between the various cover types. Positive
NEP values indicate a C sink (see Table Al).
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