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Summary

1.

 

Biological indicators are used to measure the biological health of ecosystems. Resource
managers may uncritically assume that such indicators give unbiased estimates of true
biological condition, but this assumption is largely untested. Use of biased indicators
could lead to ineffective and potentially damaging management.

 

2.

 

We used a simulation model to compare estimated indicator values objectively with
true impairment. We used the model to progressively alter the densities of 155 stream
invertebrate taxa as functions of stress and taxon-specific sensitivities to stress. We applied
the model to large samples collected from five reference-quality sites. After each stress event,
we randomly collected 100, 300 and 600 fixed-count subsamples from the remaining
assemblages and recorded the densities of all taxa in both the large sample and the fixed-
count subsamples. We then examined how well two indicators, non-metric multidimen-
sional scaling (NMDS) and sample taxa richness, detected the simulated impairment
when derived from fixed-count subsamples.

 

3.

 

NMDS ordinations of artificially impaired samples, and samples from reference and
impaired sites, showed that the simulated impairments were realistic. NMDS further showed
that impairment trajectories were evident for subsamples of 100, 300 and 600 individuals.
However, the discrimination of stress levels within ordination space greatly improved
with increasing sampling effort. The ordination also showed that increasing stress could
cause assemblages at some sites to resemble unstressed assemblages at other sites.

 

4.

 

Taxa-richness indicators were much more problematic. Estimates of taxa richness
from 100- and 300-count samples often substantially underestimated true taxa loss and
frequently indicated taxa gain. Apparent gains in taxa richness occurred because stress
caused changes in evenness that compensated for, or even overrode, the effect of true taxa
loss. Estimates of taxa loss derived from 600-count subsamples also underestimated
true taxa loss, but these estimates were strongly correlated with true taxa loss.

 

5.

 

Synthesis and applications.

 

 Bioassessements that rely on richness-based indicators derived
from small fixed-count subsamples may substantially underestimate true biological impair-
ment. Simulation models provide an objective means to evaluate how well different types
of biotic indicators measure true biological impairment in aquatic and other types of
ecosystems.

 

Key-words

 

: bioassessment, human disturbances, indicators, NMDS, ordination,
simulation, stream macroinvertebrate, taxa richness, tolerance values 

 

Journal of Applied Ecology

 

 (2005) 

 

42

 

, 954–965
doi: 10.1111/j.1365-2664.2005.01075.x

 

Introduction

 

Assessments of biological condition are essential for
effective ecosystem conservation and restoration. Such
assessments are frequently used in freshwater ecosys-
tems (Rosenberg & Resh 1993; Davis & Simon 1995;
Wright, Sutcliffe & Furse 2000; Simon 2003; Palmer
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et al

 

. 2005), for which many methods have been devel-
oped (Moss 

 

et al

 

. 1987; Karr 1991; Reynoldson 

 

et al

 

.
1995). These assessments are based on the measure-
ment and interpretation of different biotic indicators,
many of which are based on different ecological con-
cepts and statistical techniques. As such, they may not
necessarily lead to the same conclusions regarding
the biological status of either individual sites or entire
regions. Such disagreements may arise because the
indicators measure different aspects of overall biotic
condition or because they do not actually measure
the intended biological attribute (Suter 1993; Sterling
& Wilsey 2001). In either case, we need to understand
how accurately any indicator measures the biological
attributes we are interested in quantifying.

Previous evaluations of the performance of different
bioassessment methods have been mainly based on
comparisons of precision and how well each method or
indicator detected presumed impairment (Fore & Karr
1996; Reynoldson 

 

et al

 

. 1997; Chessman 1999; King &
Richardson 2002). A weakness of such studies is that
the true biological impairment is unknown and simply
assumed based on measures of physical and chemical
attributes (Cao, Bark & Williams 1997; King & Rich-
ardson 2002; Klemm 

 

et al

 

. 2003). This arises because
(i) we seldom have data that were collected prior to
disturbance and (ii) the biological data we use, whether
pre- or post-disturbance, are based on samples that incom-
pletely characterize the entire assemblage of interest at
a site. As a consequence, we cannot be sure how well any
specific indicator measures true biological impairment,
which also means we cannot confidently judge which of
two or more methods of bioassessment most accurately
measures biological condition.

One possibility for overcoming this difficulty is to
simulate biological impairment and then evaluate
the accuracy of indicators against known impairment.
Similar approaches have been used when evaluating
how well ordination techniques recover known data
structure (Minchin 1987; Palmer 1993). To be most
realistic, simulations should incorporate the differen-
tial sensitivities that taxa exhibit in response to single
or mixed disturbances. For example, although many
taxa may decrease in abundance with increasing stress,

their relative sensitivities usually differ (Lenat 1993).
Moreover, other taxa can increase in abundance with
stress (Hawkins 

 

et al

 

. 2000). In this paper, we describe
a simple procedure to simulate biological impairment
of stream macroinvertebrate assemblages realistically
based on differences among taxa in their tolerance to
stress. We then show how simulated data can be used to
evaluate the accuracy of different biological indicators.
We specifically examine (i) how well ordination by non-
metric multidimensional scaling (NMDS) detects the
effect of stress on assemblages; (ii) how well estimates
of sample taxa richness quantify true taxa-richness
loss; and (iii) whether the accuracy of these methods is
affected by sampling effort and sampling variability.

 

Methods and data set

 

Simulation of biological impairment requires construc-
tion of model assemblages, estimates of taxa tolerances,
specification of how different taxa are affected by a stress,
and measurement of true biological impairment.

 

  

 

Species-abundance distributions, for example log-normal
models, have been commonly used for simulations (He
& Legendre 2002; Brose, Martnez & Williams 2003),
but these models contain no information on taxonomic
composition or the environmental conditions found at
a site. To generate the type and diversity of assemblages
needed to address our questions, we used data derived
from large macroinvertebrate samples collected at five
streams in western USA during the summer (16 July

 

−

 

13 August) of 1999 (Table 1). All sites were considered
to be minimally disturbed (Ostermiller & Hawkins 2004).
At each site, five 50-m long reaches were delimited.
In each reach, eight Surber samples (30 

 

×

 

 30 cm area,
500 

 

µ

 

m mesh) were collected at randomly selected loca-
tions and then pooled to make a single sample (i.e. five
replicate samples per site). In the laboratory, up to 500
individuals were randomly picked from each sample.
All individuals were identified to the lowest possible
taxonomic level and were later assigned to operational
taxonomic units (OTU). The level of the OTU varied

Table 1. Physical attributes of the five reference sites used in this study and the total numbers of individuals and taxa in the large
composite samples from these sites
 

Site variables
Camas 
Creek (CM)

Goodman 
Creek (GM)

Mack 
Creek (MK)

Porter 
Creek (PT)

Trapper 
Creek (TP)

State Oregon Washington Oregon Washington Washington
Latitude 43·1298 48.1844 44·2178 46·9845 45·8928
Longitude −123·8232 −121·4994 −122·1644 −123·2408 −122·0125
Altitude (m.a.s.l.) 249 277 795 112 415
Slope (%) 3·9 4·9 7·6 2·5 5·1
Mean wet channel width (m) 9·0 7·7 6·0 6·7 8·0
Mean depth (cm) 38·2 27·1 16·2 23·7 22·0
Catchment area (hectare) 4237 1077 570 2540 1888
Total count 1533 1732 1419 2114 1498
OTU richness 66 44 48 42 43
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from species to class, but 70% of OTU were genera and
species. Those individuals that could not be identified
to an OTU were excluded. Counts derived from the five
samples collected at each site were then pooled to make
a composite sample more completely characterizing
the assemblage. We obtained 1419–2114 individuals and
42–66 taxa (OTU) at the five sites (Table 1). These large
samples should characterize the true taxonomic com-
position and relative abundances of the assemblages
much more accurately than those typically used for
bioassessment purposes, for example 100–300 counts
(Carter & Resh 2001).

However, even such large samples are unlikely to com-
pletely characterize the assemblage at a reach. It is there-
fore useful to assess the effect of sampling variability on
the performance of indicators. Simulation provided an
effective way to achieve this goal. We took three steps
to generate samples. First, we fitted the distribution
of  each taxon across the five replicate field samples
collected from a site with generalized linear models as
implemented in the R-package (R Development Core
Team 2005). The distributions of abundant taxa were
often described by negative binomial models and those
of  rare taxa by Poisson models. Secondly, we used an
R-function (rnegbin) to create 50 random counts for
each taxon at each site based on the model parameters
derived from the field replicates. We used NMDS to
compare the artificial replicates with the field replicates.
We transformed the count data by log(

 

x

 

 + 1), used the
Bray–Curtis index to measure sample similarity, and
performed NMDS with 

 



 

-

 



 

 (McCune & Mefford
1999). The maximum number of iterations was set to be
100 and the stability criterion to 0·005. The five field
replicates appeared to be randomly distributed among
the 50 simulated replicates in site-based clusters in the
ordination space, confirming their comparability. Mean
similarity analysis (Van Sickle 1997) also showed that there
was no significant difference between real and simulated
replicates (

 

P

 

 > 0·5). The 50 artificial replicates were then
evenly divided into 10 subsets (five replicates each). Each
subset was combined into a single composite sample, as
done with the field replicates. As a result, one field and
10 artificial samples were available for each site.

 

    

 

We used the output from a predictive model similar to
River Invertebrate Prediction and Classification System
or RIVPACS (Wright 

 

et al.

 

 2000; Hawkins 

 

et al.

 

 2000).
to derive tolerance values (TV) for each macroinverte-
brate taxon (Armitage 

 

et al.

 

 1987; Knapp 

 

et al.

 

 2005).
With 

 

n

 

 impaired sites, the TV for taxon 

 

i

 

 (TV

 

i

 

) can be
estimated as:

eqn 1

RIVPACS-type models estimate the probabilities of
capture of each taxon at a site if  that site is in reference
condition. The sum of these probabilities of capture for

a taxon estimates the number of sites at which that taxon
should have been captured. TV

 

i

 

 > 1 identifies tolerant
taxa and TV

 

i

 

 < 1 indicates sensitive taxa. Although the
absolute values of TV

 

i

 

 are sensitive to the magnitude of
stress occurring across the specific set of assessed sites,
they should estimate the relative tolerance of a taxon to
whatever stressors occurred at the sampling sites used
to develop the model. We observed that TV derived this
way was well correlated with values derived by an alter-
native method used by Lenat (1993).

For this analysis, we used 300-count samples of inver-
tebrates collected from 204 reference sites in western
Washington and Oregon, USA, to develop a RIVPACS-
type model for 155 taxa (OTU), following the procedures
described by Ostermiller & Hawkins (2004). These sites
were sampled at riffle habitats during 1998–2000. The
model was then applied to 185 test sites that were subject
to varying surrounding land use to estimate the propor-
tion of expected taxa that were observed (O/E). Forty-
three of these test sites had O/E values lower than the
10th percentile of reference site O/E values and were
considered to be significantly impaired. We used the data
from these 43 sites to derive TV for all 155 taxa. TV esti-
mates for rare taxa are almost certainly imprecise because
of the uncertainty in estimating ratios based on small
numbers of sites. We therefore excluded those taxa with
mean detectability < 0·025. Use of this arbitrary threshold
represents a trade-off  between statistical confidence
and the number of taxa we could use in our analyses.
This step affected only 0·05–3% of individuals at the five
sites and slightly reduced the total numbers of OTU.

We estimated the vulnerability of assemblage density
to stress by calculating the mean TV per individual (

 

T

 

)
at a site as:

eqn 2

where 

 

N

 

i

 

 is the number of individuals in taxon 

 

i

 

 and
TV

 

i

 

 is the tolerance value of taxon 

 

i

 

. This equation is
equivalent to the North Carolina Biotic Index (Lenat
1993) except that TV is derived differently. We also used
TV to describe how taxa richness in assemblages might
respond to stress as a function of the distribution of
sensitive individuals within an assemblage (Table 2).
We calculated both the mean TV (

 

T

 

) of just sensitive
taxa (i.e. TV < 1) at a site and the percentage of the
total taxa that had TV < 1. Assemblages with low 

 

T

 

and high percentage sensitive taxa would be expected
to lose more taxa when stressed than assemblages with
higher mean TV and lower percentage sensitive taxa.

 

   

 

The specific change in a taxon’s abundance with increas-
ing stress will depend on a variety of factors, including the
taxon’s physiological response to a stressor and the natural
habitat conditions present at a site. The simulation model
of Linke, Norris & Robinson (2004) allows users to define

number of sites where taxon is observed
number of sites where taxon is expected

   
   

i
i

T  
  

=
×∑

∑
N

N
i i

i

TV
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how abundance responds to a stressor (e.g. linear or expo-
nential) but choice of appropriate functions relies on
detailed knowledge of the response each taxon exhibits
to the stressor of interest, knowledge we typically lack.
The use of TV derived from RIVPACS outputs allowed
us to characterize realistically relative differences among
taxa in their responses to stressors within the region, but
these values imply that responses to stress were linear.
Although we recognize that non-linear responses might
better characterize the response of some taxa, we believe
the use of linear relationships was reasonable for the pur-
poses of this analysis (see later discussion). Linear functions
allowed us to simplify modelling while still capturing
ecologically meaningful differences among taxa given
the types of stress that occurred across our study sites.

We modelled taxon abundance as a function of stress
as follows:

 

Y

 

i

 

 

 

=

 

 

 

X

 

i

 

[1 

 

−

 

 

 

C

 

i

 

(1 

 

−

 

 TV

 

i

 

)] eqn 3

where 

 

X

 

i

 

 is the initial number of individuals in taxon 

 

i

 

,
TV

 

i

 

 is the tolerance value of taxon 

 

i

 

, 

 

C

 

 is a coefficient
that controls the level of stress and 

 

Y

 

i

 

 is the number of
individuals in taxon 

 

i

 

 after a stress occurs. If  TV

 

i

 

 > 1,
stress will increase the abundance of taxon 

 

i

 

; if TV

 

i

 

 

 

=

 

 1, the
abundance of the taxon will not be affected; if  TV

 

i

 

 < 1,
abundance will decrease. The O/E values of the 43 impaired
sites were typically 0·5–0·6, which approximately corre-
sponds to 40–50% taxa loss (C. P. Hawkins & Y. Cao,
unpublished data). Trial and error showed that a 

 

C

 

 value
of 2 resulted in 

 

c.

 

 40% taxa loss at most sites. To avoid
extrapolating beyond the range of observed impairment,
we set 

 

C

 

 to range between 0 and 2 at intervals of 0·2,
which resulted in 11 stress levels. When the number of
individuals in a taxon dropped below 1, the taxon was
considered to be locally extinct. All 11 samples for each
site were subject to this artificial impairment.

 

   

 

If  our model was accurate, artificially impaired samples
should increasingly resemble samples taken at impaired
sites in assemblage structure. NMDS is often recom-
mended to summarize and compare assemblage structure
among samples (Legendre & Legendre 1998) because
of its capability of recovering known data structure
(Kenkel & Orloci 1986; Minchin 1987). NMDS has
also been widely used in bioassessment (Clarke 1993;
Reynoldson 

 

et al

 

. 1995). We used NMDS to describe
the similarity in assemblage structure among the 204

reference site samples, 43 impaired site samples and
55 artificially impaired field samples (5 sites 

 

×

 

 11 stress
levels). Monte Carlo tests were used to identify how
many NMDS dimensions were statistically significant
(McCune & Mefford 1999). The goodness-of-fit of a
particular NMDS solution with the original between-
sample similarity matrix is often measured by the
STRESS statistic (not to be confused with stress level in
the simulation), and a STRESS value of < 0·2 is generally
considered acceptable (Clarke 1993). We also examined
if  RIVPACS O/E values for the artificially stressed
samples decreased with increasing stress.

 

   

 

We measured biological impairment in two ways: (i)
change in overall assemblage structure and (ii) loss in
taxa richness. We used the Bray–Curtis index to meas-
ure the similarity between stressed and non-stressed
samples. The Bray–Curtis index was calculated as 1 

 

−

 

[

 

Σ 

 

| 

 

X

 

ji

 

 – 

 

X

 

ki

 

 

 

| /

 

Σ

 

(

 

X

 

ji

 

 + 

 

X

 

ki

 

)], where 

 

X

 

ji

 

 is the number of
individuals of taxon 

 

i

 

 in sample 

 

j

 

, and 

 

X

 

ki

 

 is the number
of individuals of taxon 

 

i

 

 in sample 

 

k

 

. Data were log-
transformed prior to calculating the Bray–Curtis index.
Percentage taxa loss was calculated as 100 

 

×

 

 (TTR

 

0

 

−

 

 TTR

 

j

 

)/TTR

 

0

 

, where TTR

 

0

 

 is the initial total taxa rich-
ness in an unimpaired sample and TTR

 

j

 

 is the total taxa
richness observed after impairment at stress level 

 

j

 

. We
also examined how evenness and mean detectability
responded to stress, because they can strongly affect
estimates of  taxa richness in small samples (He &
Legendre 2002). We used a common measure of evenness,
J, calculated as 

 

H

 

′

 

/

 

H

 

max

 

, where 

 

H

 

′

 

 and 

 

H

 

max

 

 are the
observed and maximum Shannon’s index, respectively
(Pielou 1966). Detectability measures how likely a taxon
will be observed in a sample of a given size. If  

 

n

 

 

 

=

 

 the
total number of individuals in an assemblage and 

 

n

 

i

 

 

 

=

 

the number of  individuals in taxon 

 

i

 

, the detectability
of  taxon 

 

i

 

 will be 

 

n

 

i

 

/

 

N

 

, i.e. Pi, when a single individual
is randomly drawn. When q individuals are randomly
drawn as a fixed-count subsample, the detectability of
taxon i will be 1 − (1 − Pi)

q. The mean detectability
at stress level j is calculated as j = Σ Pi/TTRj.

    

We conducted two NMDS ordinations to visualize how
stress altered assemblage structure at the five reference
sites and how sampling effort affected the detection
of impairment by NMDS. The samples consisted of

Table 2. Indices of assemblage vulnerabilities to taxa loss: percentage sensitive taxa and mean TV of sensitive taxa for five
reference sites in west Washington and Oregon, USA
 

Index Camas Creek Goodman Creek Mack Creek Porter Creek Trapper Creek SD

Number of taxa 54 42 46 41 39
% sensitive taxa 50·00 57·14 47·83 48·78 56·41 4·41
Mean TV of sensitive taxa 0·46 0·53 0·46 0·51 0·54 0·04

P
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random subsamples of 100, 300 and 600 individuals
drawn from each of the 11 initial whole samples for each
site that were exposed to 11 stress levels (three fixed counts
× 11 samples × 11 stress levels = 363 subsamples). After
identifying the two NMDS dimensions that best differ-
entiated among sites and stress levels, respectively,
we rotated the ordination to maximize the correlation
between stress levels and the NMDS axis that most clearly
described the impairment gradient (NMDSstress). We
then used  followed by Tukey’s post-hoc tests
(Zar 1999) to determine how many adjacent stress
levels were significantly different from each other in
terms of their mean NMDSstress axis values. To examine
how sampling effort affected site separation as well as the
detection of the known stress gradient, we conducted
an ordination with subsamples from all five sites. For
visual clarity, we only used subsamples for the 11 stress
levels drawn from the five field samples. For this ordina-
tion, we chose the two axes that best distinguished sites
and stress levels, respectively.

     
  -   
  

To examine how well estimates of taxa richness derived
from different fixed-count subsamples quantified the
true taxa loss in an assemblage, we used a -77
program to randomly draw 100, 300 and 600 indivi-
duals from each of the 11 samples for each site following
simulated stress as described earlier. We then recorded
the number of taxa in each subsample. This process was
repeated 1000 times for each combination of site and
stress level to obtain estimates of mean taxa richness per
subsample. Estimates of mean taxa richness were expressed
as the percentage of taxa richness found in an impaired
sample relative to that found in a non-impaired sample
of the same fixed-count size, i.e. 100 × (TR0 − TRj) /TR0,
where TR0 is taxa richness (TR) observed in the fixed-
count subsample taken before stress occurred and TRj is
the number of taxa observed in the subsample at stress
level j (0 ≤ j ≤ 10). We then plotted the observed per-
centage taxa loss against true percentage taxa loss for
each site. If estimates of taxa richness based on fixed-count
samples accurately indicated true taxa richness loss, the
relationship should fall on a straight line with a slope of 1.

We further examined why true percentage taxa loss
could be under- or overestimated by the use of small
fixed-count samples. The value of TRj in a sample
depends on both Pi and TTRj. If  both Pi and TTRj

drop, TRj must decrease. If  TTRj remains the same but
Pi increases, TRj will increase. If  TTRj decreases, but
Pi increases, TRj may remain the same or decrease or
increase, depending on whether the effect of increase in
Pi overrides the effect of the decrease in TTRj. We used
100-count data as an example to show the relationships
among TRj, Pi and TTRj.

We first calculated the difference in TR between
stress level j and ( j + 1) (0 ≤ j ≤ 10) as [(TRj − TRj + 1)/

TRj] × 100, denoted as δTR. We then calculated the
difference in mean detectability (Pj = Σ Pi/TTRj) between
stress level j and (j + 1) as [(Pj+1 − Pj )/Pj], denoted as δP,
and the difference in evenness (J) between stress level
j and ( j + 1) as [(Jj+1 − Jj)/Jj], denoted as δJ. Next, we
calculated the difference in TTR between stress level
j and ( j + 1) as [(TTRj − TTRj+1)/TTRj], denoted as
δTTR. Because the change in TR from stress level i to
level i + 1 will depend on how δTTR varies against δP and
δJ, we calculated (δP − δTTR) and (δJ − δTTR) and plotted
each of them against δTR. We examined these correla-
tions at all five sites based on the field samples.

Results

TV for the 70 taxa (OTU) found at the five reference sites
ranged between 0 (most sensitive) to 4·97 (most tolerant).
About 50% of these taxa were sensitive (TV < 1). The mean
TV per individual differed markedly (0·64–0·94) among
the sites, showing that natural assemblages can vary
greatly in their vulnerability to the same stress. However,
neither the T (0·46–0·54) nor the percentage of sensitive
taxa (48–57%) varied much among sites (Table 2), so most
of the differences among sites in vulnerability were related
to the differences in taxa abundance.

     


The 204 reference and 43 impaired sites were generally
well separated in a 2-dimensional NMDS ordination
space (STRESS = 0·14; Fig. 1). Axis 1 was significantly
correlated with O/E ratios (r = 0·52, P < 0·01), suggest-
ing that it was largely associated with a stress gradient.
The axis 1 values of artificially stressed samples were
also significantly correlated with O/E values of these
samples (r = 0·97–0·99, P < 0·01). However, the stress

Fig. 1. Two-dimensional NMDS ordination of 300-count samples
from 204 reference stream sites, 43 impaired sites and the five field
samples stressed at 11 levels (2 dimensions, STRESS = 0·14).
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vectors for the artificially impaired samples all pointed
to the upper left part of the impaired site ‘cloud’. We
initially expected that the stress vectors would point to
the centre of the cloud, given that tolerance values were
derived from the impaired site data as a whole.

The field and simulated samples showed similar
responses to stress, and we therefore present the results
for the field samples only. With increasing stress, total
abundance generally decreased, but to different degrees
(10–59% loss) among the five sites. The magnitude of
individual loss was directly and negatively correlated with
the T per individual at a site. In these simulations, total
density tended to stabilize or even slightly increase at high
levels of stress because the increase of tolerant individuals
outpaced the decrease of individuals in sensitive taxa.
Total taxa richness and assemblage similarity decreased
with stress (Fig. 2a,b) more consistently among sites than
abundance. This result was consistent with the small
variation in the value of the two taxa loss vulnerability
indices among the five sites (Table 2). Both evenness (J)
and mean detectability (P) increased with stress at all
five sites (Fig. 2c,d) but much more strongly for two of the
streams (Mack and Trapper Creeks) than for the others.

     
     
   

The Monte Carlo tests identified two significant NMDS
dimensions (STRESS = 0·12–0·14) for each of the five

site-based ordinations, and in each case one of the two
axes was strongly correlated with the stress gradient (r =
0·85–0·97). Each of the three sets of fixed-count sub-
samples revealed a general response to stress, as shown
in two example sites (Fig. 3); however, the discrimination
between adjacent levels of stress significantly improved
with increasing fixed counts, particularly at higher stress
levels. This improvement of separation was visually evident
(Fig. 3) and statistically significant (Table 3). For example,
no adjacent stress levels were significantly different in
NMDS axis 1 scores at Porter Creek based at 100 counts;
however, six and eight of 10 pairs of adjacent stress levels
were significantly different from one another at 300 and
600 counts, respectively (Tukey’s test, n = 11, P < 0·05).

For ordinations based on all five sites, 3, 2 and 3 dimen-
sions were significant for 100-, 300- and 600-count sub-
samples, respectively (STRESS = 0·10, 0·14 and 0·08).
NMDS based on 100 counts revealed a general response

Fig. 2. Changes in the number of OTU in the five model assemblages (a), in Bray–Curtis similarity index between stressed and
original assemblages (b), the mean detectability (P) across all taxa (c), and the evenness index J (d) with increasing stress.

Table 3. Number of pairs of adjacent stress levels (e.g. 1–2
and 2–3) that were differentiated by Tukey’s test (P < 0·05)
(out of 10) based on NMDS axis 1 scores (see Fig. 3) at five
stream sites and at three fixed counts
 

Counts
Camas 
Creek

Goodman 
Creek

Mack 
Creek

Porter 
Creek

Trapper 
Creek

100 0 0 4 0 4
300 3 4 5 6 5
600 3 5 8 8 8
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to stress that was distinct from natural differences
among sites, but the sequential position of  samples
in ordination space did not always correspond to the
degree of stress to which they had been exposed, i.e.
some more severely stressed samples appeared to be less
biologically altered than some less-stressed samples
(Fig. 4a). At 300 counts, both sites and stress levels were
more clearly separated from one another (Fig. 4b). The
most accurate detection of the stress gradient was achieved
at 600 counts (Fig. 4c). This latter ordination also clearly
revealed that, in general, sites slightly diverged from one
another in assemblage structure with increasing stress
and that intermediate stress caused samples from
Goodman and Trapper Creeks to more closely resemble
unstressed samples from Mack Creek.

Estimates of taxa loss based on fixed-count subsam-
ples usually underestimated the true taxa loss, as shown
for two example sites (Fig. 5). In fact, estimates of taxa
richness based on 100-count subsamples frequently

Fig. 3. Biological stress gradients revealed by 2-dimensional
NMDS plots for 100-, 300- and 600-count subsamples at
two example sites (STRESS = 0·12–0·14). Different symbols
represent 11 stress levels (S0–S10).

Fig. 4. Biological stress gradients and site separation revealed
by NMDS. (a) 100 counts (3 dimensions, STRESS = 0·1);
(b) 300 counts (2 dimensions, STRESS = 0·14); (c) 600 counts
(3 dimensions, STRESS = 0·08). Site key follows abbreviations
in Table 1. Numbers after the site abbreviations indicate the
degree of stress (0–10).
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increased with increasing stress (i.e. negative percent-
age taxa loss), particularly for Trapper and Mack
Creeks, even though the assemblages actually lost taxa.
Estimates of taxa richness based on 300 counts showed
a similar pattern at Trapper Creek. Estimates of per-
centage taxa loss based on 100 counts for Mack Creek
and both 100 and 300 counts for Trapper Creek were
uncorrelated with true percentage taxa loss (P > 0·05)
for many or most of the 11 samples (Table 4). Estimates
of taxa loss based on 600 counts were significantly and
more strongly correlated with true taxa loss for all 11
samples at all five sites (P ≤ 0·05) (Table 4).

The failure of TR based on small samples to detect the
true taxa loss was clearly related to the positive effect of
stress on evenness and mean detectability (Fig. 2). δTR

was significantly and almost linearly related to (δP –
δTTR) and closely related to (δJ – δTTR) at all five sites,
showing that the increase in evenness compensated for
or overrode the effect of taxa loss on the estimate of TR
(Fig. 6). The more severe underestimates of taxa loss at
Trapper and Mack Creeks than at the other three sites
by 100-count subsamples exactly corresponded with
the more marked increase in evenness at these two sites
(Fig. 2). At 600 counts, j increased and varied much
less across stress levels than for 100 or 300 counts (data
not presented here) and therefore δTR was more closely
correlated with δTTR.

Discussion

   

The utility of simulation models in providing insight
regarding the behaviour of natural assemblages greatly
depends on the realism of their output. Our model
allowed taxa to either decrease or increase in response
to a stress depending on their estimated tolerance, a
phenomenon that commonly occurs in real systems
(Ford 1989; Cao, Bark & Williams 1997; Hawkins et al.
2000). Our model assumes that differences in tolerance
between taxa can be estimated with field data and that
changes in abundances with stress are linear.

We believe the use of field data to estimate differ-
ences in the tolerance between specific taxa found in
this region was essential to the success of our analyses.
The more problematic assumption was that abundances
varied linearly with stress. Our approach assumes that
if the observed frequency of detection for a taxon at non-
reference sites is higher or lower than that predicted

Fig. 5. Estimated taxa loss (%) based on 100, 300 and 600
fixed-count subsamples vs. real taxa loss (%) across 11
simulated stress levels at two example sites. Dotted line, no
change observed; thick solid line, perfect quantification of
taxa loss (%); thin solid line, fitted curves for each fixed count.

Table 4. Pearson’s correlations (r) between observed taxa loss
(%) and the true taxa loss (%) for 11 samples at each of the five
sites at three fixed counts, and the percentage of the samples
for which the correlation was significant (P < 0·05)
 

Stream Pearson’s r
100 
count

300 
count

600 
count

Camas 
Creek

Lowest 0·75 0·96 0·98
Highest 0·99 1·00 1·00
% 100·00 100·00 100·00

Goodman 
Creek

Lowest 0·21 0·64 0·94
Highest 0·96 0·99 0·99
% 72·73 100·00 100·00

Mack 
Creek

Lowest  −0·18 0·91 0·97
Highest 0·47 0·96 0·99
% 0·00 100·00 100·00

Porter 
Creek

Lowest 0·83 0·96 0·97
Highest 0·97 0·99 0·99
% 100·00 100·00 100·00

Trapper 
Creek

Lowest  −0·33 0·34 0·75
Highest 0·78 0·97 0·99
% 9·09 81·82 100·00

P
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under reference conditions, its abundance will change
proportionally with increasing stress, an assumption
we believe is reasonable given known occupancy–
abundance relationships (Gaston 1996; Gaston et al.
2000). Given the way we estimated tolerance with a
single TV value, we believed it was most parsimonious
to assume a linear relationship between abundance and
stress. Potential problems associated with this simplifi-
cation were probably minimized in our analysis for two
reasons. First, we only considered part of  the stress
gradient, i.e. from reference conditions to an intermediate
level of stress. Secondly, the frequencies of occurrence
and abundances of many taxa did not differ by much
between reference and impaired sites, hence the shape
of their response curves should not significantly affect
our analysis.

We also assumed that the TV of a taxon does not
vary across sites, although this assumption might not

always hold under certain conditions (Kiffney &
Clements 1996). In general, such intersite variation is
unlikely to be a significant source of variation given
that mean tolerance values have been successfully used
to create sensitive biotic indices that are able to clearly
distinguish impaired from reference-quality sites
(Lenat 1993).

Although we believe our simulations were realistic
enough for the particular goals of this study, we recog-
nize that they did not perfectly mimic the response of
real assemblages to stress (Fig. 1). We suspect there are
two primary reasons why the assemblages that we
artificially stressed appeared to be less altered than
expected, relative to the position of most test site sam-
ples in ordination space. First, post-analysis inspection
of RIVPACS model outputs showed that the vast
majority of the impaired sites used in analyses were
from different predicted biotic classes than the five
reference sites used in the simulations. Considering the
strong effect of site-specific conditions on assemblage
composition, the assemblages of these five sites should
have maintained some biotic difference from one
another even with severe impairment. Secondly, our
model could not add new taxa to the stressed assem-
blages, which can occur in nature as ecosystems are
stressed (Perkins 1983; Leidy & Fiedler 1985; Lyons &
Schwartz 2001). This limitation could have influenced
the locations of sites in ordination space. However, we
do not believe that either of these factors greatly com-
promised the insights we gained from our simulations.

  

NMDS ordinations based on relatively small samples
more clearly detected the effect of stress (Fig. 3) than
taxa richness based on the same sampling effort
(Fig. 5). This result implies that taxonomic composi-
tion and relative abundance provide a stronger signal
of stress than taxa richness (cf. Schindler 1987;
Hawkins & Carlisle 2001). In our analysis, the detec-
tion of stress also improved significantly with increas-
ing sampling effort (Figs 3 and 4), a result consistent
with those of King & Richardson (2002) and Oster-
miller & Hawkins (2004). This improvement may be
partially attributed to either the inclusion of  more
taxa or the decrease in sampling error associated with
increasing fixed count (Cao, Larsen & Hughes 2002;
Ostermiller & Hawkins 2004).

The results of our simulations also imply that those
bioassessment methods that rely on estimates of taxa
richness derived from small fixed-count subsamples
(e.g. 100–300 individuals) may significantly underesti-
mate true biological impairment (Fig. 5). This result is
especially interesting given that many authors report
that taxa richness is one of the most sensitive indicators
of environmental degradation (Karr 1991; Fore & Karr
1996; Weigel et al. 2002; Klemm et al. 2003). These
apparently contradictory observations may be the result
of either how richness is measured or the magnitude of

Fig. 6. Relationship of the proportional differences in
estimated taxa richness between two adjacent stress levels
(δTR) with the difference between the proportional change in
mean taxa detectability (δP) and the proportional change in
true taxa richness (δTRR) (a) and with the difference between
the proportional change in evenness (δJ) and the proportional
change in true taxa richness (δTRR) (b).
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stress examined. For example, some studies (Fore &
Karr 1996) measured richness as ‘species density’, an
area-based measure in which full samples are processed,
instead of ‘species richness’, the number of taxa in a
fixed-count subsample of individuals (Gotelli & Graves
1996). These two measures of richness can respond to
stress differently (McCabe & Gotelli 2000). In fact, our
results showed that estimates of taxa richness in a small
fixed-count sample could increase in response to stress
even though the assemblage actually lost taxa (Fig. 5).
This result was consistent with observations by Mackey
& Currie (2000), who showed that the response of fixed-
count estimates of taxa richness to stress depended on
sampling effort and the magnitude of stress examined.
Larsen & Herlihy (1998) also showed that the two rich-
ness measures were similar only at high sampling effort,
a result that is consistent with our observation that the
correlation between observed and true taxa loss was
statistically significant for only 600-count samples.

Taxa richness based on small fixed-count samples (e.g.
100 counts) can detect relatively severe taxa loss (e.g.
> 30%) (Wright et al. 1995; Barbour et al. 1996; Growns
et al. 1997; Doberstein, Karr & Conquest. 1999) but it
is not commonly appreciated that taxa richness based
on a small fixed-count sample can increase when the
total taxa richness in an assemblage decreases. As
shown in Fig. 6 and elsewhere (Larsen & Herlihy 1998;
He & Legendre 2002), the number of taxa observed in
a fixed-count sample is strongly affected by evenness
and mean detectability. When stress increases evenness,
the average detectability across all taxa increases (Fig. 2c)
and can override the effect of  taxa loss on estimates
of taxa richness. Estimates of taxa richness based on
small fixed-count samples can therefore decline slowly
or even increase as true taxa richness decreases.

To assess the relationship between disturbance
(stress), evenness and estimates of taxa richness in a
broader context, we examined the results reported in 62
journal articles that described how evenness changed
along disturbance gradients (Appendix 1). These stud-
ies involved a wide range of disturbances, taxonomic
groups and habitats. Ten of these studies examined
freshwater macroinvertebrates. Evenness increased in
response to disturbance in a slight majority (52%) of
the studies examined, at least at some of the sampling
sites, over part of the disturbance gradient or over part
of study period. Evenness increased in 60% of the fresh-
water macroinvertebrate studies. Evenness decreased
in 38% of the studies, including four studies (40%) of
freshwater macroinvertebrates. These results are con-
sistent with a review of evenness–disturbance relation-
ships conducted by Mackey & Currie (2001). In a
simulation study, Mackey & Currie (2000) found that
disturbance could either increase or decrease evenness,
depending on the intensity and frequency of distur-
bances, which may explain the mixed responses of
evenness to stress observed in the studies we reviewed.

Most monitoring programmes in the USA use fixed-
count samples ≤ 200 individuals (Carter & Resh 2001),

which we believe may result in underestimates of true
biological impairment. The most obvious way to over-
come the masking effect of changes in evenness on
measures of taxa richness is to increase sampling effort.
Six hundred counts appear to be the minimum sam-
pling effort required for reliably detecting changes in
true taxa richness in stream macroinvertebrate assem-
blages. Based on the relationship between the strength
of assemblage classification and sampling effort, Cao
et al. (2002) also recommended 400–600 counts for
stream bioassessment.

     
  

We quantified biological impairment with both taxa
loss and assemblage similarity (Bray–Curtis index) in
this study. Biological impairment can be measured in
many other ways (Wright, Sutcliffe & Furse 2000).
However, all methods are derived from the same infor-
mation (taxonomic composition or relative abundance
or both) and our two measures of  biological im-
pairment (NMDS and taxa loss) fully capture this
information. Our results should therefore be of general
significance to most measures of biological condition.
The procedure we described could easily be applied to
many metrics or indicators beyond NMDS and taxa
richness. For example, it can be used to examine the
response of individual metrics to known biological
changes to determine if  indices based on a specific
combination of metrics are in fact more accurate than
single metrics. Similarly, one could use the procedure
to assess the sensitivity of  multivariate approaches,
such as the BEAST model of  Reynoldson et al.
(1995). Our next objective is to use this technique to
evaluate how different similarity measures, clustering
methods and sampling standardizations affect how
RIVPACS-type models measure true percentage
taxa loss. Overall, such ecologically realistic simula-
tions should provide a powerful tool to test the
accuracy of established bioassessment methods and
aid in identifying how methods can be improved in the
future.
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Appendix. A literature study shows that evenness may
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disturbance gradient.
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