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Introduction

The need to establish health-based exposure guidelines for

agents of bioterrorism and many other micro-organisms

is relevant in a variety of contexts, including the develop-

ment of first responder guidelines, medical response plans

(Mitchell-Blackwood et al. 2011), remediation standards

(Hong et al. 2010) and sensor system design (Huang et al.

2010). A key element in the development of these guide-

lines is an understanding of the dose–response relation-

ship, which predicts the consequence of a microbiological

exposure to a given dose of organisms (Haas et al. 1999).

The impact of exposure guidelines and remediation goals

on resource management and the associated expenditures

are significant. Therefore, an analysis which transparently

presents the science supporting the derivation and selec-

tion of dose–response curves, which in turn support the

establishment of health-based exposure guidelines, is

needed.

The ability of dose–response models to aid in making

predictions of potential consequences of future events is

impeded by both aleatory and epistemic uncertainty
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Abstract

Aims: To develop a predictive dose–response model for describing the survival

of animals exposed to Bacillus anthracis to support risk management options.

Methods and Results: Dose–response curves were generated from a large dose–

mortality data set (>11 000 data points) consisting of guinea pigs exposed via

the inhalation route to 76 different product preparations of B. anthracis.

Because of the predictive nature of the Bayesian hierarchical approach (BHA),

this method was used. The utility of this method in planning for a variety of

scenarios from best case to worst case was demonstrated.

Conclusions: A wide range of expected virulence was observed across products.

Median estimates of virulence match well with previously published statistical

estimates, but upper bound values of virulence are much greater than previous

statistical estimates.

Significance and Impact of the Study: This study is the first meta-analysis in

open literature to estimate the dose–response relationship for B. anthracis from

a very large data set, generally a rare occurrence for highly infectious patho-

gens. The results are also the first to suggest the extent of variability, which is

contributed by product preparation and ⁄ or dissemination methods, informa-

tion needed for health-based risk management decisions in response to a delib-

erate release. A set of possible benchmark values produced through this

analysis can be tied to the risk tolerance of the decision-maker or available

intelligence. Further, the substantial size of the data set led to the ability to

assess the appropriateness of the assumed distributional form of the prior, a

common limitation in Bayesian analysis.
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because of inherent variability and lack of full knowledge

about both biological and physical processes, respectively.

As is the case with most environmental stressors, chemical

or biological, a primary source of variability arises from

the need to extrapolate experimental data from animal

surrogate hosts to humans, although data driven methods

for describing interspecies differences are rapidly advanc-

ing (Jones et al. 2009). Unfortunately, even with the

development of more complex models, the fact remains

that biosafety and ethics concerns preclude the ability to

perform large in vivo studies in animals and humans.

Hence, both the limited availability and small sample sizes

of historic experimental data sets for bioterrorism agents

further prevent complete reduction of uncertainty by this

source. Additionally, there are other relevant sources of

uncertainty primarily because of variability to consider in

the microbial risk assessment of these agents. These

include (i) strain differences when surrogate strains of the

same organism are used to assess virulence experimentally

and (ii) the use of different experimental protocols and

preparation methods. Because micro-organisms are

uniquely subject to evolution and bioengineering, even if

a perfect model could be developed based on all available

observations to describe the sample-to-sample variations

from all relevant inputs and assumptions (e.g. host spe-

cies, strains, isolates and dissemination techniques), it

would be limited in its ability to predict the virulence of

a pathogen in a future bioterrorist attack (National

Research Council, 2010). Therefore, in this paper, we

consider the importance of uncertainty in our character-

ization of variability by fitting a Bayesian hierarchical

dose–response model to a historic US Army data set. By

using this approach to parameterize the dose–response

curve, estimates of the virulence of different preparations

or products of Bacillus anthracis were produced for use in

the formulation of information that supports health-based

risk management decisions.

Virulence, a term used to describe the relative ability of

a pathogen to cause harm in a host organism, can also be

used to compare different formulations or products gen-

erated from the same pathogen. Generally, virulence is

described using a lethal dose (LD) estimate for a given

percentage of the population (e.g. LD50). By comparing

LD estimates, one can rank virulence for a given set of

pathogenic test products. Because preparation of the test

products may potentially impact delivery (e.g. aerosol

source strength and decay rates), environmental and

respiratory tract deposition, the viability of the spores

themselves, which is directly related to infectivity, the

consideration of the variability related to this parameter

is important in assessing and managing microbial risk.

Several previous estimates of Bacillus anthracis viru-

lence are available. However, questions remain about both

the amount and relevance of the evidence used to inform

these estimates (Coleman et al. 2008). The most quoted

LD50 for B. anthracis is 8000–10 000 spores (Defense

Intelligence Agency, 1986). However, there are no experi-

mental details to support the reported LD50 in the

Defense Intelligence Agency document (DIA). Another

commonly cited LD50 is 2500–55 000 inhaled anthrax

spores (Inglesby et al., 2002), which references the former

mentioned DIA document; therefore, it does not provide

the improved confidence needed to use as a basis for

exposure guidelines. A more recent estimate of infectivity

was reported by Bartrand et al. (2008) – 94 320 inhaled

spores (with 95% confidence interval bounds equal to

74 100–125 060). This much larger LD50 estimate was the

result of statistical modelling of pooled data sets from

guinea pigs exposed via the intranasal route and rhesus

monkeys exposed via the inhalation route. The reported

inconsistencies in virulence for B. anthracis are attribut-

able to many possible explanations, including but not

limited to variability in the sensitivity of the host organ-

isms, strain differences, delivery mechanism of the experi-

mental test product, related environmental conditions

and ⁄ or test product preparation.

While the utility of statistical dose–response modelling

is clear, classical or frequentist dose–response approaches

do not capture the variability from experiment to experi-

ment (US EPA, 2008). Whereas the Bayesian approach

allows for hierarchical models, in which results from one

experiment are seen as deriving from an overall distribu-

tion of potential experimental outcomes. In the classical

approach, it is generally necessary to assume the results of

different experiments are either produced by identical or

related underlying processes (so that the results of differ-

ent experiments can be pooled) or are produced by com-

pletely independent processes (in which case the results

must be analysed separately and results of one experiment

cannot inform the analysis of another experiment). In

addition to overcoming these limitations, the dose–

response curves generated by the Bayesian hierarchical

approach allow predictions to be made for unobserved

pathogenic agents (i.e. future agents that may be used in

an attack), based on the observed data available for analy-

sis. Furthermore, because this method is fully probabilis-

tic, a distribution of values for each dose–response

parameter makes it possible to quantify uncertainty

associated with the estimate.

The authors recognize that because of the enormous

amount of variability from the sources discussed herein,

the selection of a model and ⁄ or parameter estimate for

use in downstream risk management decisions becomes

complex and much less straightforward than acceptance

of a particular statistical confidence level or margin of

error. The consideration of B. anthracis products with
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different virulence-class (e.g. high, medium and low)

characteristics provide insights into the potential public

health outcome given a product used. For example, high

virulence-class products would be good representatives of

‘worst-case scenarios’. Therefore, a set of possible bench-

mark values, which may be tied to the risk tolerance of

the decision-maker or available intelligence, are provided.

Communication of uncertainty through a range of plausi-

ble values, which can be explored in scenario assessments

made by decision-makers, is an efficient and effective

means of informing downstream decisions (National

Research Council, 2007). This study approaches the out-

put of the analysis from the perspective of an emergency

manager who prior to an event and in all likelihood

throughout the initial stages of an event lacks information

on the exact type of product that has been released,

but instead must prepare for the full range of possible

scenarios. This perspective allows one to communicate

information required by risk analysts for the develop-

ment of health-based exposure guidelines, without pro-

viding information as to which characteristics result in

higher (or lower) virulence that could be exploited by

adversaries.

Data and methods

Data set

The data set used for this analysis is a compilation of

unclassified or declassified historical US Army data gener-

ated in the 1950s and 1960s. Original reports were

obtained and mined for dose–response data as part of a

larger ongoing dose–response project at the US Army

Public Health Command – formerly the Center for

Health Promotion and Preventive Medicine. The data set

is extensive with more than 11 000 observations of dose

and mortality in Hartley strain guinea pigs challenged

with inhalational exposure to a virulent strain of

B. anthracis. Based on the range of dates, these studies

were conducted and papers published by USAMID in the

1960s the Vollum strain are most probable. An analysis of

such a large body of evidence is rare.

This data set was obtained from a number of different

tests performed by researchers over the test period. Each

test was conducted using the same B. anthracis strain

under several experimental variables: product preparation,

chamber size, animal weight, temperature, relative humid-

ity, season, collection device, fans and delivery mecha-

nism. A total of 76 experimental products with a range of

physical properties (e.g. water content, pH, dry weight

and particle size), storage times, storage temperatures and

virulence were used in these tests representing variability

in product preparation. Each product, the actual aerosol

to which the animals were exposed, represents a particu-

lar preparation under a particular set of experimental

conditions as described above. However, the details of

such preparations, delivery and experimental conditions

are noted elsewhere (Thran et al. 2010) and are not

deemed to be important to the understanding of the

current analysis.

Analysis method

Dose–response relationships were fit to data using a

three-stage Bayesian hierarchical structure (Gilks et al.

1996) to describe the observations of death of individual

animals exposed to B. anthracis. In the first stage, an

exponential dose–response function (Haas et al. 1999)

given by Eqn 1 is used to describe the probability of

mortality P(D) at a given dose (d).

P Dð Þ ¼ 1� exp �kdð Þ ð1Þ

The parameter, k, is the probability that a single organism

can survive and cause infection. In the second stage of the

model, the values of k for each product are described by a

lognormal hyperdistribution given by Eqn 2:

lnk � Nðllnk; r
2Þ ð2Þ

where lnk is the natural log of k, N is a normal distribu-

tion, with parameters llnk, the mean of the distribution,

and r2, the variance of the distribution. In the third stage

of the model, the parameters of llnk and r2 from the sec-

ond stage hyperdistribution are described using diffuse

priors with fixed parameters given by Eqns 3 and 4:

lnllnk � N �11�9; 22
� �

ð3Þ

�2lnr2 � N 0�67; 0�842
� �

ð4Þ

The posterior or predictive distribution for each

observed product is given mathematically by Eqn 5:

rlnkllnkf kjjxjllnk; r
2
lnk

� �
f llnkjxð Þf rlnkjxð Þdllnk drlnk ð5Þ

where:

f ðkjjxj; llnk; r
2
lnkÞis the posterior distribution of the

values of k for a product number, j, given the observed

experiment using that product number and the

hyperparameters of the prior distribution.

f(llnk|x) is the posterior distribution of the hyperpa-

rameter, llnk, given the observed data.

f(rlnk|x) is the posterior distribution of the hyperpa-

rameter, rlnk, given the observed data.

Monte Carlo Markov Chain (MCMC) methods were

used to develop a sample from the posterior distribution
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of the model parameters. The algorithm was implemented

in ‘R’ (http://www.r-project.org), a free software environ-

ment for statistical computing. A minimum of 10 000

samples were obtained for each posterior distribution.

The Bayesian approach allows for the estimation of

dose–response model parameters and the associated

uncertainty of unobserved agents (e.g. a product that has

not been used in an experiment or terrorist attack).

Mathematically, the posterior predictive distribution of an

unobserved species is represented by Eqn 6:

rlnkllnkf ðkjllnk; r
2
lnkÞf ðllnkjxÞf ðrlnkjxÞ dllnk drlnk ð6Þ

where:

f ðkjllnk; r
2
lnkÞis the posterior distribution of k given llnk

and rlnk. This distribution is a simulated k based on the

posterior distribution of the hyperparameters.

f(llnk|x) is the posterior distribution of the hyperpa-

rameter, llnk, given the observed data.

f(rlnk|x) is the posterior distribution of the hyperpa-

rameter, rlnk, given the observed data.

An average predictive dose–response curve for an

unobserved species can also be determined by integrating

over the full range of variability and uncertainty in the

parameters, as described in Eqn 7:

E riskjdose½ � ¼ kP Djk; doseð Þf kjxð Þdk � 1=NP Djkð Þ
¼ AveragePðDÞ

ð7Þ

where:

E [risk|dose] = The expected value of risk defined as

P(D), the probability of mortality at any given the dose

P (D|k,dose) is the probability of death given the

parameter value and any given dose.

f(k|x) is the posterior distribution of the parameter

after taking the observed data into account; This repre-

sents the distribution of values of k that are plausible after

updating the prior distribution with the observed data.

N is the number of MCMC samples from the posterior

distribution of k.

P(D|k) is the marginal probability of death integrated

across all possible values of the parameter.

Model verification

To verify the internal validity of the model, a simple

comparison with values of k estimated by the maximum

likelihood estimation (MLE) method (Haas et al. 1999)

was conducted. These were also computed in ‘R’ along

with confidence intervals via bootstrap re-sampling. Addi-

tionally, goodness of fit was determined by likelihood

ratio test where the fit of the exponential dose–response

model to the individual product data sets was deter-

mined. The lognormal distribution which was specified as

the prior distribution represents an assumption that the

76 values of k for the test products are log normally dis-

tributed. This assumption was made in the absence of

observable data. The actual distribution of the values of k

was obtained when the exponential dose–response model

was fit to the experimental data using maximum likeli-

hood estimation. Finally, the abundance of estimates

available from the analysis of this data set made it possi-

ble to generate a quantile–quantile (Q–Q) plot to assess

how well the assumed hierarchical distribution (the speci-

fied prior) fit the actual distribution of values of k

obtained from MLE estimates for the different

experiments.

Results

Dose–response parameters (k) for individual products

The box plots in Fig. 1 illustrate the posterior distribu-

tions of the lnk for each product. The lack of overlap

among many of the boxes indicates that different prod-

ucts have distinct dose–response behaviour. In fact, the

range of variability among products is huge. While large

numbers of products cluster around lnk of )12, several

products have values of lnk of )10, a factor of e2 or 7Æ7
above the central tendency. Values below the central

ln
 k

Individual products (1–76)

–6
–8

–1
0

–1
2 

–1
4

–1
6

–1
8

Figure 1 Box plots of individual test product

posterior distributions. ( ) The dashed oval

indicated the lower bound of product variabil-

ity, while ( ) the solid oval shows the upper

bound of observed product variability.
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tendency, as low as lnk of )16 are observed as well. This

range of )16 to )10 indicates a factor of 400 (e6)

variability.

Predictive distribution for unobserved product

By observing the posterior distribution of the grand mean

and variance describing the observed experiments, we

derive a distribution from which we can make predictions

about unobserved test products. The mean and median

values of the distribution, which are very similar, were

used to plot a predictive risk curve in Fig. 2 with associ-

ated confidence intervals. Figure 2 also includes the aver-

age predictive dose–response curve that is determined by

integrating over the full range of variability and uncer-

tainty in the parameters. The curve produced illustrates

more conservative estimates of risks at lower doses, where

data are lacking. The risk curves generated from parame-

ter estimates of the most virulent product are included as

a reference point for the upper bound risk predictions.

These values fall within the credible bounds of risk from

the predictive distribution approaching the upper limit.

Model verification

An internal check of validity consisted of comparing val-

ues of k estimated by both the BHA and MLE approach

(Fig. 3). The MLE values of k and confidence intervals are

compared to the posterior mean and credible intervals

obtained by the BHA in Fig. 4. Values were not able to

be estimated for six products using the MLE approach

because of singularity in response. For the 70 products

that could be compared, the values of k fall along the

1 : 1 correspondence line suggesting a nearly exact match

(Fig. 3) between approaches. There are two exceptions for

products at the lower end of the range where the BHA

estimated values of k are higher than the MLE values.

Estimates of model uncertainty, as represented by the

width of confidence intervals for the two approaches, are

also largely convergent. A plot of 95% credible intervals

from the BHA against 95% confidence intervals for the

MLE (Fig. 4) shows that most products lie along the 1 : 1

correspondence line indicating very similar estimates of

uncertainty from the two approaches. For the larger con-

fidence intervals (i.e. when uncertainty is greatest), the

BHA produces narrower credible intervals (points fall

below 1 : 1 line) and this also corresponds to when there

are fewer observations informing and estimate.

Goodness of fit

For the exponential model, the fit of 70 products was

evaluated using likelihood ratio tests. As noted above, two

(2) products had no observed fatalities and four (4) prod-

ucts had 100% fatalities, so they could not be estimated

by maximum likelihood methods. The selection criterion

of P < 0Æ01 for rejection was used for the analysis. For 42

of the 70 products, the likelihood ratio test indicated

acceptable fit. In consistency with Occam’s razor, the

most parsimonious model – the exponential model – was

fit initially in this analysis. The beta-Poisson model (Haas

et al. 1999) – a two parameter dose–response model –

was explored as an alternative to the exponential dose–

response model in the light of the goodness-of-fit test
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Figure 2 Predictive Risk Curve for Unobserved
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results. For seven products, the beta-Poisson provided

acceptable fit when the exponential did not. While this

does indicate that the exponential model was appropriate

for most products, at least a third was not fit well by the

exponential model. In interpreting this result, it is impor-

tant to note that the test compares the proposed model

with a perfectly fitting model (i.e. a model with a separate

parameter for each dose group). Therefore, this is a very

stringent test. A model may still have some predictive

ability, and hence be useful, despite having some diver-

gence from the data. A summary of these results for each

product is provided in Table 1. The beta-Poisson model

was recommended over the exponential model when it

provided a statistically significant improvement in fit

determined by minimized deviance.

A second issue of model fit is whether the distribution

of product virulence matches the proposed prior distribu-

tion, which was initially a subjective estimate. While the

lognormal distribution is unbound (between 0 and 1), a

requirement to represent k as a probability, the values

observed in this study were not expected to violate this

requirement. Figure 5 shows that there are some devia-

tions between the distribution of values of lnk (for each

product obtained by MLE) and a lognormal distribution

(the assumed distribution for these values specified by the

prior.) The observed values do not perfectly match theo-

retical quantiles of the lognormal distribution depicted by

the solid line.

Benchmark estimates of virulence

A summary of possible parameter values are tabulated in

Table 2. The approach produces a wide range of estimates

of virulence, which can be used in a number of decision

scenarios as suggested in the table. Lethal doses (LD10

and LD50) are also provided for comparative analysis.

Both the central tendency and upper bound estimates of

the Bayesian and MLE methods produce similar results.

Highly conservative estimates can be drawn by using the

95th percentile of unobserved product predictive distribu-

tion or by observing the statistics from the posterior of

most virulent product tested in the data set (with a simi-

lar MLE result). The low lethal dose values produced are

in the proximity of values previously published with inad-

equate detail (Defense Intelligence Agency, 1986; Inglesby

et al., 2002).
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each product.)
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Discussion

Observations

A very wide range of virulence was observed across the

B. anthracis experimental test product preparations analy-

sed herein. Virulence was previously defined as a term

used to describe the relative ability of a pathogen to cause

harm in a host organism. Virulence can also be described

as the degree of pathogenicity within a group of micro-

organisms as indicated by case fatality rates and ⁄ or the

ability of the organism to invade the tissues of the host.

The pathogenic capacity of an organism is known to be

determined by its virulence factors (US National Library

of Medicine, 2010). These factors can be described as

structures or chemical constituents that contribute to

pathophysiology and include toxins, biological structures

like endospores and surface adhesion molecules. While

the biological reasons were unknown or simply not

reported at the time the experimental data were collected,

it was established that varying both preparation and envi-

ronmental conditions clearly contributed to the resistance

and virulence properties of the endospores formed. In

the present context, it should be noted that the spore

Table 1 Goodness-of-fit test summary

Product no.

Exponential

model fits

beta-Poisson

model fits

beta-Poisson

model

recommended Product no.

Exponential

model fits

beta-poisson

model fits

beta-Poisson

model

recommended

1 Yes Yes 39 Yes Yes

2 Yes Yes 40 Yes Yes

3 Yes Yes 41 Yes Yes

4 Yes Yes 42 Yes Yes

5 Yes Yes 43 No No

6 Yes Yes 44 Yes Yes

7 No No 45 No Yes Yes

8 Yes Yes 46 Yes Yes Yes

9 Yes Yes 47 No No

10 No No 48 No Yes Yes

11 No No 49 No Yes Yes

12 Yes Yes 50 No animals died

13 No No 51 Yes NA

14 Yes Yes 52 Yes NA

15 No No 53 Yes NA

16 No No 54 Yes NA

17 No No 55 Yes NA

18 Yes Yes 56 Yes NA

19 Yes Yes 57 No animals died

20 No No 58 Yes Yes

21 Yes Yes 59 No animals died

22 Yes Yes 60 No animals died

23 No Yes Yes 61 Yes Yes

24 No Yes Yes 62 No No

25 Yes Yes 63 No No

26 No No 64 No No

27 Yes Yes 65 Yes Yes

28 No No 66 Yes Yes

29 No No 67 Yes Yes

30 No Yes Yes 68 Yes Yes

31 No No 69 Yes Yes

32 No No 70 No Yes Yes

33 Yes Yes Yes 71 All animals died

34 Yes Yes 72 All animals died

35 Yes Yes 73 No No

36 Yes Yes 74 No No

37 No No 75 Yes Yes

38 Yes Yes 76 Yes Yes
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adaptation of the micro-organism for dispersal and sur-

vival for extended periods of time also make it favourable

for environmental transmission, persistence and prolifera-

tion. However, the present study is the first meta-analysis

across experimental variables (associated with preparation

and administration of the aerosol) to be conducted to

determine the variability associated with these variables

on virulence. The observed range of dose–response

parameters (ln k) from )16 to )10 indicated a factor of

400 (e6) variability, which compared to the variability

associated with previously assessed sources, such as differ-

ent host species (Mitchell-Blackwood 2010), microbial

strains (Bartrand et al. 2008; Mitchell-Blackwood 2010)

and aerosol sizes (Bartrand et al. 2008; Mitchell-

Blackwood 2010), represents much larger differences.

The parameter estimates could have been produced by

classical statistical methods, MLE, but this method only

captures variability. As stated in the introduction, it is

not only important to capture variability when assessing

risks from exposure to B. anthracis, but also our uncer-

tainty in this estimate because such a high hazard is asso-

ciated with B. anthracis and we want to make decisions

about future events using the most information available.

In comparison with the MLE, it is reasonable to antici-

pate similarities between the central tendencies for values

of k of individual products and MLE estimates given the

use of a diffuse prior in the Bayesian hierarchical model

structure. However, the confidence intervals can be

expected to be smaller (tighter) by the BHA, as the BHA

allows for information to be shared among different

experiments. In fact, the tendency of the BHA to pull

estimates for products towards the central tendency of

other products is because of the sharing of information.

Thus, products observed in Fig. 1 with very low values of

k are pulled upward towards the overall mean. This is

appropriate if the hyperdistribution accurately reflects the

relatedness of different parameters. However, in this case,

there may be aspects of the relationship among the prod-

ucts that are not captured by a single hyperdistribution.

For example, some products may lack certain features,

which would result in a markedly decreased virulence, or

even cause them to be avirulent (not able to cause harm).

In such a case, the assumption of a continuous distribu-

tion of virulence embodied in the hyperdistribution used

herein would not be appropriate. However, it should be

emphasized that the effect here is modest because the

deviations are not large enough to produce an undesir-

able result. While the hyperdistribution used in this study

is imperfect, it is health protective. The observed values

are lower than the modelled (expected) values for both

the upper and lower tails. As illustrated in Fig. 5, the

points for both the upper and lower values of the

observed range are above their corresponding modelled

(expected) values, which are indicated by the solid line.

Hence, the model produces conservative and therefore

health-protective estimates.

Because limited information is available about what

preparation might be used in a future event, the predic-

tive curve for unobserved species (Fig. 2) was developed

from the lower tier parameters of the Bayesian hierarchi-

cal model. The confidence intervals for the predictive dis-

tribution were much larger than those for individual

experiments but this was expected because these predic-

tions include variation across product types as well as

uncertainty in the effects of a single product type. Intui-

tively, we would expect to have less confidence about the

prediction for an unobserved product. The average pre-

dictive curve which integrated over the uncertainty in

each estimate of risk made it clear that extrapolated val-

ues in the lower dose range have a greater degree of

uncertainty than average parameter values consistent with

the lack of observations in the experiments at this range

of the curve.

Implications

Because of the intended applied nature of this work and

the complexity of the associated downstream management

responses, several selections of estimates were summarized

in Table 2. The following discussion communicates how

different estimates might be used as benchmarks in risk

management decisions including exposure guideline

development. While these values were derived from a

small animal model, the application of the data to

humans for risk management decisions is supported by

the work published by Bartrand et al. (2008), which

demonstrated statistically the ability to pool data sets

between different host species. Additionally, the Bayesian
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of lnk of each product. Mean of Posterior Distribution of lnk for each

product (s).

Variance in B. anthracis virulence J. Mitchell-Blackwood et al.

272
ª 2012 No claim to US Government works ⁄ J. Mitchell-Blackwell & P.L. Gurian

Journal of Applied Microbiology 113, 265–275 ª 2012 The Society for Applied Microbiology



hierarchical framework has been used to conduct a meta-

analysis of Bacillus anthracis challenge studies using differ-

ent host species and strains of the organisms (Mitchell-

Blackwood 2010). These results indicated that a data dri-

ven uncertainty factor of 10 may be appropriate for

extrapolating between host species in such studies. This

information should be weighed by a decision-maker uti-

lizing these results.

There are several reasons why multiple values are

required; (i) Benefit-cost analyses used to inform risk

management decisions are generally based on mean or

median estimates (Office of Management and Budget

(OMB) (1992); (ii) In reality, responders need to be pre-

pared for the worst-case scenario, and so they must have

health-protective upper bound estimates of virulence; (iii)

In some cases, a less virulent agent may be used. In such

cases, less extensive remediation efforts may be appropri-

ate, and some estimates of the lower bound of virulence

are needed to inform preparations for such situations

(Mitchell-Blackwood et al. 2011).

MLE approaches are often used for regulatory and

guidance purposes as they are well established and under-

stood to be asymptotically unbiased and efficient, making

MLE approaches very favourable for large samples. Given

existing guidance to base benefit-cost estimates on central

tendencies, one might take the median of the observed

values of lnk (Table 2), which in this case would be )11Æ7,

corresponding to an LD10 of 12 300 and an LD50 of

80 700. However, this approach may not be appropriate

for all circumstances. Health-protective, worst-case esti-

mates may be needed initially to protect first responders

and exposed individuals, before the details of the product

are known. One straightforward manner to obtain a

health-protective estimate of virulence is to select the

most virulent product and base estimates on this product.

This approach could be justified by assuming that an

upper bound on virulence was reached during the course

of developing the products included in this data set. This

view is supported by the few points at the upper tail of

the lnk estimates (Fig. 5). While several products have

values of lnk of approx. )10, none exceed this value

(despite higher expected values based on a normal distri-

bution of values of lnk). This is consistent with the idea

that there is some physical limitation on how virulent the

products can be, and that this data set contains several

products that reached this upper bound (i.e. the two in

the upper right of Fig. 1 with observed values of lnk of

approx. )10). Choosing the most virulent of the products

dramatically changes the dose–response estimates. The

most virulent product has an lnk estimate of )10Æ0, corre-

sponding to an LD10 of 6320 and an LD50 of 15 300. If,

as an additional measure to conservatism, the 95th per-

centile of the bootstrap MLE estimates is used, then an

lnk of )9Æ81 is obtained corresponding to an LD10 of

1920 and an LD50 of 12 600.

The BHA offers several alternatives for estimates as well.

The central tendency can be estimated by taking the poster-

ior median value of the hyperdistribution, that is, the poster-

ior median of the values of lnk predicted by the fitted model.

This results in an lnk estimate of )12Æ0, corresponding to an

LD10 of 17 100 and an LD50 of 113 000. As noted above, the

hyperdistribution is not an exact fit and hence observed and

modelled median values do not match exactly, but this

approach is in at least rough agreement with the median of

the MLE estimate (lnk = )11Æ7). An alternative measure of

central tendency is to take the average of the risk predicted

by different posterior samples of lnk (shown in Fig. 2). This

average predictive distribution is often appropriate in

microbial risk assessment because it integrates across dif-

ferent potential parameter values to estimate the central

Table 2 Benchmark dose estimates (with three significant figures) for two decision scenarios

Decision scenario Model result Parameter (ln k)

Benchmark Doses (organisms)

LD10 LD50

MLE – Central Tendency Median of MLE estimates )11Æ7 12 300 80 700

MLE – Conservative Highest of observed products (95th

percentile upper bound)

)10Æ0 ()9Æ81) 2320 (1920) 15 300 (12 600)

BHA – Central Tendency Median (mean is similar to two

significant digits) of predictive distribution

)12Æ0 17 100 113 000

Average predictive distribution n ⁄ a 7770 101 000

BHA – Conservative Median of posterior distribution of

most virulent product (95th percentile

upper bound)

)10Æ03 ()9Æ85) 2360 (1970) 15 700 (13 100)

95th percentile of predictive

distribution (unobserved product)

)9Æ71 1720 11 500

BHA, Bayesian Hierarchical Approach; MLE, Maximum Likelihood Estimation; LD, lethal dose.
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tendency of risk (Englehardt 2004; US EPA 2008). While

there is no single lnk value to compare with other

approaches, this method produces an LD10 of 7770 and an

LD50 of 101 000, values somewhat lower than either the

median of the MLE estimates and of the median of the

Bayesian posterior distribution of lnk. This method

accounts for the fact that risk is an exponential function of

lnk. As benchmark values should be based on central ten-

dencies of risk, not central tendencies of model inputs, this

approach is proposed as being more appropriate for central

tendencies of B. anthracis virulence than the other two

methods.

The BHA also allows for more conservative estimates

of virulence. Estimates of upper bounds for the most

virulent of the observed products may be used, in which

case very similar values to those obtained for this prod-

uct by MLE are obtained (Table 2). An alternate

approach is to take an upper bound of the posterior

predictive distribution of lnk. If the 95th percentile is

taken as an upper bound, then a value of )9Æ71 is

obtained, which corresponds to an LD10 of 1720 and an

LD50 of 11 500. These values indicate a greater virulence

than any actually observed, exceeding even the 95th per-

centile of the most virulent product observed here. This

may be seen as unrealistic or appropriately conservative,

depending on how reliable the hyperdistribution is

deemed. Given the lack of fit of the hyperdistribution

used here, a great deal of confidence cannot be placed

in these values, but they do at least allow for the reality

that the sample of products observed here may not be

indicative of the universe of potential products.

The central tendencies estimated here (given in

Table 2) are in very rough alignment with the estimate of

Bartrand et al. (2008) of an LD50 of 94 320 spores based

on pooled guinea pig and monkey data. However, the

conservative, health-protective values estimated here are

considerably lower than the estimates of Bartrand et al.

(2008) and more closely resemble the Defense Intelligence

Agency (1986) values of 8000 to 10 000 spores (the 95th

percentile posterior predictive value of 11 500 comes clos-

est to this range).

It is acknowledged that the fit of both the individual

product dose–response models and the overall hyperdis-

tribution used by the BHA require further work. How-

ever, the use of LD50 values on the order of 10 000 spores

can be justified by this work. The most lethal product

was fit adequately by the exponential dose–response

model and gives an LD50 value on this order.

Conclusions

This study evaluated a large data set to estimate B. an-

thracis virulence. A great deal of variability was found

as estimates of the virulence of different products

spanned a factor of 400. Both MLE and BHA

approaches were found to generally provide similar esti-

mates. The BHA approach produces narrower confi-

dence intervals, particularly for sparsely sampled

products, because the hierarchical model structure

allowed sharing of information among products. Central

tendencies of virulence observed here are in accordance

with those of the study of Bartrand et al. (2008) rather

than the values reported by Defense Intelligence Agency

(1986) and are informed by a large body of evidence.

However, the conservative, health-protective estimated

here (LD50 = 11 500 organisms) are close to the range

reported by Defense Intelligence Agency (1986). This

work provides a statistical backing for the use of these

more conservative, health-protective estimates of viru-

lence. These values may be used to represent worst-case

situations, in which the characteristics of the product

are unknown and a highly health-protective value is

desired. They could also be used to characterize the sit-

uation in which an intelligent adversary knowingly

selects the most dangerous product from a large array

of potential agents. Further work that considers alterna-

tive model structures to assess whether model fit can

be improved is warranted.
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