Supplementary Material S1: Communication Before Coherence

Edmund T. Rolls, Oxford Centre for Computational Neuroscience, Oxford, UK*

and University of Warwick, Department of Computer Science, Coventry CV4 7AL, UK

Tristan J. Webb, University of Warwick

Department of Computer Science and Complexity Science Centre, Coventry CV4 7AL, UK

and

Gustavo Deco, Universitat Pompeu Fabra, Theoretical and Computational Neuroscience

Roc Boronat 138, 08018 Barcelona, Spain

April 10, 2012

*Corresponding author. Oxford Centre for Computational Neuroscience, Oxford, UK. Email: Edmund.Rolls@oxcns.org. Url: http://www.oxcns.org
This Supplementary Material S1 summarizes the parameters used in the simulations shown in the paper and provides a tabular description of the network following the prescription of (Nordlie, Gewaltig & Plesser 2009).

<table>
<thead>
<tr>
<th>A</th>
<th>Model Summary for each of the two networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populations</td>
<td>Two: excitatory, inhibitory</td>
</tr>
<tr>
<td>Topology</td>
<td>—</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Fully connected</td>
</tr>
<tr>
<td>Neuron model</td>
<td>Leaky integrate-and-fire, fixed threshold, fixed refractory period, NMDA</td>
</tr>
<tr>
<td>Channel models</td>
<td>—</td>
</tr>
<tr>
<td>Synapse model</td>
<td>Instantaneous jump and exponential decay for AMPA and GABA and exponential jump and decay for NMDA receptors</td>
</tr>
<tr>
<td>Input</td>
<td>Independent fixed-rate Poisson spike trains to each selective population</td>
</tr>
<tr>
<td>Measurements</td>
<td>Spike activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>Populations of neurons in each Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of neurons</td>
<td>$N = 1000$</td>
</tr>
<tr>
<td>Excitatory neurons</td>
<td>$N_E = 0.8 \times N$</td>
</tr>
<tr>
<td>Inhibitory neurons</td>
<td>$N_I = 0.2 \times N$</td>
</tr>
<tr>
<td>Neurons in each selective pool</td>
<td>$N_{\text{selective}} = N_E \cdot \text{sparseness}$</td>
</tr>
</tbody>
</table>
Neuron and Synapse Model

Type
Leaky integrate-and-fire, conductance-based synapses

Subthreshold dynamics

\[
\frac{dV(t)}{dt} = -g_m(V(t) - V_L) - I_{\text{syn}}(t),
\]

\[
I_{\text{syn}}(t) = I_{\text{AMPA,ext}}(t) + I_{\text{AMPA,rec}}(t) + I_{\text{NMDA}}(t) + I_{\text{GABA}}(t)
\]

Spiking

If \(V(t) > V_{\theta} \land t > t^* + \tau_p \)

1. set \(t^* = t \)
2. emit spike with time-stamp \(t^* \)
3. \(V(t) = V_{\text{reset}} \)

Synaptic currents

\[
I_{\text{AMPA,ext}}(t) = g_{\text{AMPA,ext}}(V(t) - V_E) \sum_{j=1}^{N_E} s_j^{\text{AMPA,ext}}(t)
\]

\[
I_{\text{AMPA,rec}}(t) = g_{\text{AMPA,rec}}(V(t) - V_E) \sum_{j=1}^{N_E} w_j s_j^{\text{AMPA,rec}}(t) u_j(t)
\]

\[
I_{\text{NMDA}}(t) = \frac{g_{\text{NMDA}}(V(t) - V_E)}{1 + \gamma \exp(-\beta V(t))} \sum_{j=1}^{N_E} w_j s_j^{\text{NMDA}}(t) u_j(t)
\]

\[
I_{\text{GABA}}(t) = g_{\text{GABA}}(V(t) - V_I) \sum_{j=1}^{N_I} s_j^{\text{GABA}}(t)
\]

Fraction of open channels

\[
\frac{ds_j^{\text{AMPA,ext}}(t)}{dt} = -s_j^{\text{AMPA,ext}}(t)/\tau_{\text{AMPA}} + \sum_k \delta(t - t^*_j - \delta)
\]

\[
\frac{ds_j^{\text{AMPA,rec}}(t)}{dt} = -s_j^{\text{AMPA,rec}}(t)/\tau_{\text{AMPA}} + \sum_k \delta(t - t^*_j - \delta)
\]

\[
\frac{ds_j^{\text{NMDA}}(t)}{dt} = -s_j^{\text{NMDA}}(t)/\tau_{\text{NMDA,decay}} + ax_j(t)(1 - s_j^{\text{NMDA}}(t))
\]

\[
\frac{dx_j(t)}{dt} = -x_j(t)/\tau_{\text{NMDA,rise}} + \sum_k \delta(t - t^*_j - \delta)
\]

\[
\frac{ds_j^{\text{GABA}}(t)}{dt} = -s_j^{\text{GABA}}(t)/\tau_{\text{GABA}} + \sum_k \delta(t - t^*_j - \delta)
\]
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson generators</td>
<td>Fixed rate N_{ext} synapses per neuron, with each synapse driven by a Poisson process</td>
</tr>
</tbody>
</table>

Measurements

- Spike activity
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_m (excitatory)</td>
<td>0.5 nF</td>
</tr>
<tr>
<td>C_m (inhibitory)</td>
<td>0.2 nF</td>
</tr>
<tr>
<td>g_m (excitatory)</td>
<td>25 nS</td>
</tr>
<tr>
<td>g_m (inhibitory)</td>
<td>20 nS</td>
</tr>
<tr>
<td>V_L</td>
<td>-70 mV</td>
</tr>
<tr>
<td>V_{thr}</td>
<td>-50 mV</td>
</tr>
<tr>
<td>V_{reset}</td>
<td>-55 mV</td>
</tr>
<tr>
<td>V_E</td>
<td>0 mV</td>
</tr>
<tr>
<td>V_I</td>
<td>-70 mV</td>
</tr>
<tr>
<td>$g_{AMPA,ext}$ (excitatory)</td>
<td>2.08 nS</td>
</tr>
<tr>
<td>$g_{AMPA,rec}$ (excitatory)</td>
<td>0.104 nS</td>
</tr>
<tr>
<td>g_{NMDA} (excitatory)</td>
<td>0.327 nS</td>
</tr>
<tr>
<td>g_{GABA} (excitatory)</td>
<td>1.2875 nS</td>
</tr>
<tr>
<td>$g_{AMPA,ext}$ (inhibitory)</td>
<td>1.62 nS</td>
</tr>
<tr>
<td>$g_{AMPA,rec}$ (inhibitory)</td>
<td>0.081 nS</td>
</tr>
<tr>
<td>g_{NMDA} (inhibitory)</td>
<td>0.258 nS</td>
</tr>
<tr>
<td>g_{GABA} (inhibitory)</td>
<td>0.973 nS</td>
</tr>
<tr>
<td>$\tau_{NMDA,decay}$</td>
<td>100 ms</td>
</tr>
<tr>
<td>$\tau_{NMDA,rise}$</td>
<td>2 ms</td>
</tr>
<tr>
<td>τ_{AMPA}</td>
<td>2 ms</td>
</tr>
<tr>
<td>τ_{GABA}</td>
<td>10 ms</td>
</tr>
<tr>
<td>τ_{rp} (excitatory)</td>
<td>2 ms</td>
</tr>
<tr>
<td>τ_{rp} (inhibitory)</td>
<td>1 ms</td>
</tr>
<tr>
<td>α</td>
<td>0.5 ms$^{-1}$</td>
</tr>
<tr>
<td>γ</td>
<td>$[Mg^{2+}] / (3.57 \text{mM}) = 0.280$</td>
</tr>
<tr>
<td>β</td>
<td>0.062 mV$^{-1}$</td>
</tr>
<tr>
<td>sparseness, a</td>
<td>0.10</td>
</tr>
<tr>
<td>N_{ext}</td>
<td>800</td>
</tr>
</tbody>
</table>
Table 2: Connection parameters used within each network in the model

<table>
<thead>
<tr>
<th>w_+</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_-</td>
<td>0.877</td>
</tr>
</tbody>
</table>

References