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The Effect on Attribute Prediction of 
Location Uncertainty in Spatial Data 

A datum is considered spatial if it contains location information. Typically, there is 
also attribute information, whose distribution depends on its location. Thus, error in 
location information can lead to error in attribute information, which is reflected ulti- 
mately in the inference drawn from the data. We propose a statistical model for in- 
corporating location error into spatial data analysis. We investigate the effect of 
location error on the spatial lag, the covariance function, and optimal spatial linear 
prediction (that is, kriging). We show that the form of kriging aft.. adjusting for loca- 
tion error is the same as that of kriging without adjusting for location error: However, 
location error changes entries in the matrix of explanato y variables, the matrix of co- 
variances between the sample sites, and the vector of covariances between the sample 
sites and the prediction location. We investigate, through simulation, the effect that 
va y ing  trend, measurement error, location error, range of spatial dependence, sam- 
ple size, and prediction location have on kriging afer  and without adjusting for loca- 
tion error: When the location error is large, kriging after adjusting for location error 
performs markedly better than kriging without adjusting for location error, in terms 
of both the prediction bias and the mean squared prediction error: 

Data are considered spatial if they contain location information. Typically, there is 
also attribute information available. The distribution of the attribute vanes from loca- 
tion to location. Attribute information consists of the measured response (or re- 
sponses), which can be either discrete (for example, counts of animal populations) or 
continuous (for example, soil pH). With the advent of optimal spatial linear predic- 
tion (that is, kriging), the analysis of spatially dependent data has progressed rapidly 
in the past forty years. Cressie (1990) lists three components necessary for the develop- 
ment of ordinary kriging: (i) use of covariances (or variograms) to weight observations, 
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(ii) use of the best linear unbiased estimator (BLUE) for an unknown constant mean p, 
and (iii) use of spatial locations in the determination of covariances (or variograms). 

Since locations are used to determine covariances, and covariances are used to 
weight observations, uncertainty in locations leads to a further component of variabil- 
ity in kriging predictions. Almost without fail, texts and articles about kriging assume 
that locations are known without error. Here, we explicitly account for location un- 
certainty and quantify its effect on statistical inference. We show how to incorporate 
location error by adjusting the component parts of the kriging equations and then 
proceeding as if the spatial process were sampled without location error. 

Suppose that we have one (spatially incomplete) observation on the random 
process (Z(s): s E D C 9V'). Without further assumptions about Z( ') ,  data 
[Z(sJ,. . .,Z(sn)} represent a sample from a single realization and statistical inference is 
not possible. In subsequent sections of this article, we shall assume that Z(') has a lin- 
ear mean and a stationary covariance function: 

(i) var(Z(s)) < 00; for all s E D  , 
(ii) p(s) = E(Z(s)) = f (s)'p; for all s E D , 
(iii) cov(Z(s,),Z(sz)) = C(s,-s,); for all sl,sz E D  . (1) 

Condition (i) ensures that the first two moments of the process are defined. Condi- 
tion (ii) assumes that the mean function is linear in the (q  + 1) X 1 vector of un- 
known parameters p, where the explanatory variables f(s) are known functions of s E 
D. Condition (iii) states that the covariance between locations s1 and s2 depends only 
on the spatial lag h = s2 - sl. The lag plays a central role in geostatistics; however, lit- 
tle attention has been paid to the effect of location uncertainty (that is, error in s and 
thus in h) on spatial methods such as kriging (see, for example, Clark, 1979, for a brief 
discussion). 

Models for  Location Error in Spatial Data 
Geographers have attempted to account for location uncertainty. When creating 

maps, location is of paramount interest. At the other extreme, many statistical analy- 
ses take no account of location, modeling data as if it were statistically independent. 
Geostatistics is between these extremes. Geostatisticians use location to model trend 
and correlation between attribute values over a geographic region; however, they ig- 
nore uncertainty in locations. 

The advent and then ubiquity of geographic information systems (GIS) has led to 
an explosion of information available from spatial databases. The easy storage and 
quick retrieval possible within a CIS requires concomitant development of spatial 
statistical methodology. Incorporation of attribute-error analysis is often handled 
through geostatistics, but there is an urgent need for statistical research and software 
developments to deal with both location error and attribute error (for example, Grif- 
fith, Haining, and Arbia 1999). 

Geographers and users of raster-based GIS often model the effects of location 
error in spatial data by assuming that the attribute value is discrete (often a gray-scale 
value) and that the spatial domain is a fixed grid of pixels. A commonly used model for 
the Bayesian restoration of images, attributed to Geman and Geman (1984), has been 
adapted by researchers working with GIS to investigate how errors in source maps 
propagate through a GIS to output maps (for example, Goodchild 1989; Haining and 
Arbia 1993; and Arbia, Griffith, and Haining 1998). Output maps result from overlay 
operations that combine two or more source maps at potentially different scales of 
spatial resolution. 
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Following Arbia, Griffith, and Haining (1998), let T be the true source map (that is, 
ground truth). Suppose that T is an n x m matrix of gray-scale values. The (ij)th ele- 
ment of T, the gray-scale value for the (ij)th pixel, is denoted by Ty; i = 1,2,. . .,n,j = 
1,2,. . .,m. Similarly, Zy is the gray-scale value for the (ij)th element of the observable 
map Z. Let (g,h) be a shift in the location of pixel (ij), such that its location is 
(i+gj+h), where g,h = 0, +I, +2,... Consider the corruption model, which is de- 
fined as 

where 

and 

[w.,.( , h ) r  0 :  i = 1 ,..., n; j = 1 ,..., m; g,h = 0,+1,+2 ,... ) . 
13 g (3) 

The probability that we measure pixel (i+gj+h) instead of pixel (id) is w,(g,h). 
The attribute error associated with pixel (ij) is uij .  If we assume that the location 
error is independent of (ij), then wi .(g,h) is independent of (ij) and (3)  can be re- 
placed by the n X n blurring matrix 6. In that case, (2) becomes 

Z = W T + U .  

To proceed with an error-propagation analysis, we specify W and a distribution for U. 
Arbia , Griffith, and Haining (1998) use Monte Car10 simulation to assess the effect of 
location error on output maps. They generate realizations {Tk : k = 1,. . . ,K]  of the true 
map. With W fixed and a known distribution for U ,  they obtain maps (2, : k = 1,. . . , K )  
where pixel (ij) has observed attribute values Zyl, Zyz,. , . , ZyK. They assess the effect of 
error (both attribute and location) by comparing the observed attribute value Zyk. to the 
true value Tyk; k = 1,. . . ,K.  Attempts to extend error-propagation analyses to contmuous 
source maps have included attribute error but not location error (Heuvelink 1996). 

Users of CIS are becoming aware that determining the suitability of a spatial data- 
base for a spatial analysis depends on the effect of location error on the analysis being 
done. Lewis and Hutchinson (2000) conclude that location error has less effect than 
the structure of the underlying spatial random process. Here, we quantify the effect 
of location error on kriging. 

Morphometrics, which studies the geometrical form and arrangement of organ- 
isms, is also concerned with uncertainty of locations. Morphological data usually in- 
clude information on landmarks, whose relative positions correspond from organism 
to organism within a species (Bookstein 1986). For instance, the tip of the nose and 
the point of the chin are often used as landmarks in Homo sapiens. While morpho- 
metrics does not provide an immemate solution to the problem of location error in 
spatial prediction, it does provide models to deal with location error. For example, 
Bookstein (1986) describes a null model for analyzing configurations: K landmarks, 
L1,L2 ,..., LK, are distributed about their centroids, W,,W2 ,..., W,, according to a cir- 
cular normal model (that is, a bivariate normal distribution with covariance matrix 
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equal to a multiple of the identity matrix). Independent normally distributed location 
errors is one of two models used throughout this article. 

Regression rarely incorporates either errors in locations or errors in explanatory 
variables. Measurement-error models, often called errors-in-variables models, incor- 
porate uncertainty in explanatory (x) variables (for example, Fuller 1987). Following 
Fazekas et al. (1999), consider the model 

where zi is an observable (possibly vector-valued) response, g(si ,p) is the mean func- 
tion measured at the (unobservable) nonrandom, error-free explanatory variables si, 
p are mean-function parameters, [ tij) are zero-mean independent measurement er- 
rors, are (observable) values of the explanatory variables, and (EJ are zero-mean in- 
dependent errors on the explanatory variables. Fazekas and Kukush (2000) prove 
consistency and asymptotic normality results for the usual least-squares estimator of 
p. Though si is not observable, they assume that possible values for si are identifiable. 
The least-squares estimator results are proved for infill asymptotics, which choose 
more and more points within a finite spatial domain, following Lahiri et al. (1999). 
Now, if we interpret si as an error-free spatial location and xi as its observed location, 
then the model (4) can be interpreted as one that includes both attribute error and lo- 
cation error. 

Sources of Location Error in Spatial Data 
Consider a collection of n intended sample sites S = (sl,s2,. . .,s,] chosen a priori. In 

Figure 1, the open squares represent S. Suppose that an attempt is made to go to the 
sites in S using a positioning instrument that is not infinitely accurate, and hence the 
realized sites, R = (rl,r2, ..., r,}, are displaced from those in S. In Figure 1, the solid 
squares represent R. 

rn 

0 

I 0  
0. 

51 

P 

FIG. 1. The Intended Sampling Sites, S, Are Represented by the Open Squares. The Realized Sampling 
Sites, R, Are Represented by the Solid Squares. 
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Location error enters through the inability to go to (and sample from) the prede- 
termined sites S. This scenario, which we call the design model, embodies the most 
common source of location error in geostatistics [see, for example, Krumbein and 
Graybill 1965, ch. 7)], where core samples in mining are taken). In design-model 
sampling, an appropriate statistical model relating the realized sites to the intended 
sites is 

that is, the positioning instrument is assumed to be unbiased and the realized sites R 
are distributed about the intended sites S according to a probability distribution with 
mean S and covariance matrix “p. Note that here S is known but R is not. 

Although the design model is assumed throughout this article, we describe an al- 
ternative model for location error. Location error can occur when the resource to be 
sampled determines the sample locations. Although the resource may have well-de- 
fined locations, the geographic coordinates are not known a priori. 

Consider sampling redwood trees in a forest, the locations of which are not known 
a priori. Each tree’s location is recorded using a positioning instrument. As above, the 
instrument is not infinitely accurate. Let B = (bl,bz,. . .,b,] be the reported locations 
returned by the positioning instrument. Let A = (al,a2,. . .,a,] be the actual locations, 
which are fixed but unknown. In this scenario, which we call the resource model, nei- 
ther A nor B are predetermined. In resource-model sampling, an appropriate statisti- 
cal model relating the reported tree locations to the actual tree locations is 

that is, the positioning instrument is assumed to be unbiased and the reported sites 
are distributed about the actual sites according to a probability distribution with 
mean A and covariance matrix rp. The location error arises from the inability to re- 
port a resource’s location infinitely accurately. In contrast to the design model (5) ,  
here B is observed but A is unknown. 

The design model and the resource model are modifications of two scenarios in- 
corporating error in the response and explanatory variables for the regression of x and 
y ,  as described by Berkson (1950). Consider the model 

x = u + d ,  

y = o + e ;  (7) 

where u and o are the “true” values of x and y .  If x is an intended location and u is the 
realized location, then we have design-model sampling. If u is the actual location of a 
resource and x is the reported location, then we have resource-model sampling. 
Berkson (1950) calls the two scenarios a controlled observation and an uncontrolled 
observation. 

Location error may be knowingly introduced to simplify a statistical analysis of spa- 
tial data. Suppose a datum occurs at a known ri, but for the purposes of spatial analy- 
sis is assumed to have occurred at si; i = 1, ..., n. Griffith, Haining, and Arbia (1999) 
describe this type of location error in attributing census-tract data to zip-code cen- 
troids. Although such errors are not random, we can treat them as if they were ran- 
dom to make efficient predictions. Thus, the design model is useful. 

In this article, we incorporate location error by building on established kriging 
methodology. In the following section, we describe the model, discuss estimation of 
the location-error variance, investigate distribution of the spatial lag, and examine the 
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effect that uncertainty in the lag has on the first two moments of the spatial random 
process. In section 2, we describe kriging results without adjusting for location error. 
In section 3, we incorporate the location error into our calculation of the optimal 
kriging weights and present kriging after adjusting for location error. In section 4, the 
techniques described are investigated using simulation. In section 5, we summarize 
our results. An appendix contains the proofs of two important results. 

1. DESIGN MODEL FOR LOCATION ERROR 

1.1 Model Description 

to a realized site ri = si + p(si). Thus, the design model is 
In design-model sampling, location error causes an intended site si to be displaced 

Z(s) = Y(r) + E(r), 

r = s + p(s); s E D . (8)  

The observed attribute value Z(s), at the intended location s, is equal to the error-free 
attribute value Y(r), at the realized location r, plus measurement error &(r) that is in- 
dependent of Y(r). Throughout, we assume that &(’) is a white-noise process with 
mean zero and variance 0,”. The realized location r is equal to the intended location s 
plus location error p(s) that is independent of s .  The observed attribute values, Z = 
{Z(sJ,. . .,Z(sn)], comprise the data. The intended locations, S = {sl,. . .,sf,], are a col- 
lection of known parameters. 

Typically, the data provide no information on RIS in (5). If a sample is taken with a 
single positioning instrument, then to estimate R we must have prior knowledge of 
the positioning instrument’s accuracy. One way to gather information on RIS is to lo- 
cate S with the usual positioning instrument and then to record R with a highly accu- 
rate instrument. The location error is then given by p(sJ = ri - si; i = 1,. . .,n. 

Throughout, we assume one of the following two distributions for location error: 

A l .  iid normal location error; that is, (vecR - vecS)lvecS - N(0,o;Zdn), where 
vecR = (ri,. . . ,rr:)’, ri E W; i = 1,. . . ,n, vec S is defined similarly, Zcln is the iden- 
tity matrix of dimension dn X dn, and d is the dimension of the spatial domain. 

A2. iid uniform location error; that is, ((rq] - ( s q ] ) l { s t j ] - U n ~  iid ( - .$ 30 p , & O p ) ;  

i = 1,. . . ,n; j  = 1,. . . ,d, where d is the dimension of the spatial domain. 

In A1 and A2, independent location errors are assumed from site to site and in the d 
directions for each site. For the design model and normal errors Al ,  the maximum 
likelihood estimate (MLE) of the location error variance, o;, is 

n C (ri-si)’(ri-si) 
6 2  = i=l  

P dn 

which is unbiased for 0;. For the design model and uniform errors A2, the MLE of 
02p is 

G2 = -(maxlr.. 1 - sqJ) 2 , p 3  ?l 
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an unbiased estimator of based on the MLE, is (dn + 1) / 6 d n  (maxlrV - s$. [ ( 11 
1.2 Distribution of the Spatial Lag for the Design Model 

The spatial lag between si and sj is defined as h, = s - si. In geostatistical theory, 
no uncertainty is associated with kj. However, in tkip$esence of location error, is 
different from the actual lag vq = rj - ri. For the design model and assuming p(s) 
given by (8) are iid( 0,o2,Zd); SE D, then E(vq) = hj and var(vq) = 202,Zd. (Note that 
normal location errors A1 and uniform location errors A2 are examples of such p(s).) 

For illustration, consider data in 911, and assume that hti = sj - si > 0. With loca- 
tion error, it is possible that vlj. = 'j - ri < 0. Since the covariance is invariant to the 
order of the sites, our interest is in 5 = Iv41. For the design model and normal errors 
Al, it is straightforward to derive the following: 

i r  

where h = h, for notational convenience. 
Curves A and B in Figure 2 show the expectation, E(C), and the standard deviation, 

0(5) = (var(6))" as a function of h, for normal errors A1 and 02p = 100. As h in- 
creases, the effect of location error diminishes. In the limit, as h approaches 00, E(6) 
approaches h,  represented by line D, and 0(5) approaches h o p ,  represented by line 
C. As h increases, the probability that the order of ri and r.  is ajlip of the order of si 
and sj decreases. Therefore, 6 converges (in probability$ to V, - N(h,202,). For 
small h, E(5) > h and 0(5) < h o p .  For example, at h = 0, = 10, we have E(5) = 
1.4h and 0(5) = 1.020,. Therefore, iid normal location error has an appreciable ef- 
fect on the expected lag only for small h. From a simulation, Atkinson (1997) con- 
cludes that location error increases the variogram only at short lags (see also Lewis 
and Hutchinson 2000). 

For the design model and uniform errors A2, it is straightforward to derive 

- -Ah3 + 2&,h2 + 8&$ ; if h 5 2&, , 
E(S)= I "  120; 3 1 

I h ; otherwise, 
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0 10 20 30 40 
intended spatial lag 

FIG. 2. The Case of iid Normal Errors A1 in %': Curve A shows E(S), cuwe B shows ~ ( 5 ) .  line C is &a,, 
and line D is h. 

and 

1 h6 + -&h5 1 

12960; 1080; 

h 4 + - & h 3 + - h 2 ;  1 1 ifhS2&, , 
120; 270, 3 

20; ; otherwise. 

Curves A and B in Figure 3 show E(5) and o(&) as a function of h, for uniform er- 
rors A2 and 0; = 100. As h increases, the effect of location error diminishes until 

E(Q = h and o(5) = 160,; h 2 2&0,, because the order of ri and 9 must be the 

same as the order of si and sj for h 2 2 h o p .  There is little difference between these 
curves and those in Figure 2. This suggests that the distribution of the location error 
is relatively unimportant, at least in the iid case. 

1.3 Attribute Moments for  the Design Model 
First, we assume that the hidden process Y(.), introduced in (8) ,  satisfies (1). The 

expectation of the observable process Z( ') is found by integrating the expectation of 
Y(') over the locations realizable under the location error distribution. For the design 
model, and assuming that the measurement error E,(') has a mean of zero, the first 
moment after adjusting for location error is, 



270 / Geographical Analysis 

0 10 20 30 40 
intended spatial lag 

FIG. 3. The Case of iid Uniform Errors A2 in S1:,Curve A shows E(G), curve B shows o(G), line C is hop,  
and line D is h. 

where p(') = E(Y(')) = f(')'p, and the location error u has probability density func- 
tion (pdf) g .  Note that (9) holds even when p( ') is not linear in the parameters p. 

Similarly, we adjust the covariance of Z(') by integrating the covariance of Y(')  over 
the locations realizable under the location error distribution. For the design model, 
and assuming that the location errors are iid mean zero, the covariance after adjust- 
ing for location error is, 

where C ( ' )  is the covariance function gven in (1) for Y(').  Note that, because we as- 
sume the location error has a density and no discrete mass at 0, the variance of &('), 
0,2, does not enter into (10). 

The covariance after adjusting for location error must be positive semidefinite; that 
is, C,(h) must satisfy 

for any finite collection of sites (si: i = 1, ..., m) and real numbers (ai: i = 1, ..., m). 
Since C( .) in (10) is positive semidefinite, Cp( ') is also positive semidefinite. 

Unfortunately, the integration in (10) is analytically intractable for many commonly 
used covariance models, assuming even the simplest location error models. The inte- 
grals in (9) and (10) can be evaluated using Monte Carlo methods. We evaluate (9) by 

(i) drawing a random sample (ui: i = 1,. . .,n) from g('); 
1 n  

(ii) estimating E(z(~) )  as 1 c p(s + ui) .  
n i=l 
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Similarly, we can evaluate (10). 
Here, we discuss two analyhcally tractable covariance models to illustrate the effect 

of location emor. Assume p ( s ) %  Unif( -&cT,, h o p )  ; s E D C 911 and the covariance 

is given by the isotropic exponential covariance function, 

C(h) = o2 exp{ -:}, 
where 6' is the variance of Y('), h is the intended lag, and 0 is a scale parameter. Small 
values of 0 correspond to only localized spatial dependence, and large values corre- 
spond to longer-range spatial dependence. By substituting (11) into (lo), we obtain 

- 1 . .  

4&,0 - 2h0 - 20' exp 

h - 2 6 0 ,  

- 

Figure 4 illustrates the effect of iid uniform location error on the exponential co- 
variance function in 3' when the parameters d = 1 0 0 0 , ~ ~  = 100, and 0 = 100 are 
fixed. For each intended lag h = OJ,. . .,25, we proceed as f%lows: 

(i) Calculate the exponential covariance (12) after adjusting for location error. Let 
w denote the resulting function of h. 

(ii) Calculate the exponential covariance (11) without adjusting for location error, 
using the intended lag h. Let x denote the resulting function of h. 

In Figure 4, curve A is a plot of w against h and B is a plot of x against h. The effect 
of location error on the covariance is most pronounced for small lags, where the 
realized lag can be quite different from the intended lag. At h = 0, r (0) = 1000, and 
w(0) = 893.9. Thus, failing to adjust gives covariances that can be too large by more 
than 10 percent. As h increases, the effect of location error diminishes. 

To obtain second moments of the effect of location error on covariances, we use 
Monte Carlo simulation. Table 1 gives the consequences of iid uniform location error 
on the exponential covariance function in 911. Case I shows the effect of small loca- 
tion error (0; = lo), case I1 moderate location error (0: = loo), and case I11 large lo- 
cation error (0; = 1000). For each, we consider severafintended lags (h = 0,25,100) 
and several values of the scale parameter (0 = 50, 100,500). The process variance is 
fixed at 0' = 1000. (The relative effect of location error is not a function of the 
process variance.) For each combination of 02p, 0, and h, the Monte Carlo simulation 
proceeds as follows: 
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0 5 10 15 20 25 
intended spatial lag 

FIG. 4. Curve A Is the Exponential Covariance (12) after Adjusting for Location Error in %I. Curve B Is 
the Exponential Covariance (11) without Adjusting for Location Error in %I. 

(i) Generate 1000 realizations of independent location errors, u and i), according to 

the iid uniform distribution on the interval (-&cF~,&cF~). 

(ii) Calculate the exponential covariance (12) after adjusting for location error. Let 
w denote the resulting function of h. 

(iii) Calculate the exponential covariance (11) without adjusting for location error, 
using the intended lag h. Let x denote the resulting function of h. 

(iv) Calculate the exponential covariance (11) without adjusting for location error, 
using the realized lag (h + i) - u).  Let y denote the resulting function of h. 

The mean squared errors (MSE) are obtained for the covariance after adjusting for 
location error (MSE") and the covariance without adjusting for location error ( MSEd) 
using the Monte Carlo estimators, 

1 looo C (w(h)(i)  - y(h)"))2 MSEC(h) = - 
1000 i= l  

and 

1 1000 

1000 i = l  
MSEd(h) = - C (x(h)(') - ~ ( h ) " ) ' ) ~  , 

where i denotes the ith realization simulated. Table 1 shows that the MSE" is smaller 
than the M S E d  for all combinations of c$, 8, and h, where the difference is notewor- 
thy. From Figure 4 and Table 1, we conclude: 
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TABLE 1 
The Effect of iid Uniform Location Error on the Exponential Covariance Function in %I 

CaVe 

I 8 = 5 0 , h = O  
0 = 50, h = 25 

8 =  100,h=0 

0 = 100, h = 100 

8 = 500, h = 100 

I1 8 = 50, h = 0 
8 = 50, h = 25 

0 = 100, h = 0 

8 = 100, h = 100 

e = 50, h = 100 

e = 100, h = 25 

e = 500,h = o e = 500, h = 25 

e = 50, h = 100 

e = i w , h  = 25 

e = 500, h = o e = 500,h = 25 
0 = 500, h = 100 

0 = 50, h = 25 

0 = 100, h = 0 
0 = 100, h = 25 
8 =  100,h= 100 

e = 500, h = 25 
8 = 500, h = 100 

111 8 = 50, h = 0 

e = 50, h = 100 

e = 500, h = o 

cov' 

930.80 
608.97 
135.88 
964.46 
779.58 
368.24 
992.74 
951.27 
818.76 

804.09 
626.20 
140.84 
893.88 
784.13 
371.57 
977.30 
951.11 
819.06 

542.79 
504.35 
198.43 
716.39 
685.90 
405.93 
930.80 
921.42 
821.96 

covh 

1OOO.00 
606.53 
135.34 

1OOO.00 
778.80 
367.88 

1OOO.00 
951.23 
818.73 

1000.00 
606.53 
135.34 

1OOO.00 
778.80 
367.88 

1OOO.00 
951.23 
818.73 

1OOO.00 
606.53 
135.43 

1000.00 
778.80 
367.88 

1OOO.00 
951.23 
818.73 

MSE' M S E ~  Percent Change" 

2294 
3016 

150 
626 
120 
283 
26 ~. 

71 
53 

15973 
29530 

1631 
5178 

11621 
2863 
250 
664 
52 1 

57562 
62384 
32337 
29402 
33989 
31515 
2247 
2961 
5367 

7207 
3020 

150 
1964 
120 
283 
78 
71 
53 

55285 
29752 

1662 
16937 
11603 
2862 
749 
665 
520 

266352 
73492 
35474 

104112 
41240 
32706 
7039 
3889 
5364 

-68.17 
-0.13 

0.00 
-68.13 

0.00 
0.00 

-66.67 
0.00 
0.00 

-71.11 
-0.75 
-1.87 

-69.43 
0.16 
0.04 

-66.62 
-0.15 

0.19 

-78.39 
-15.11 
-8.84 

-71.76 
- 17.58 
-3.64 

-68.08 
-23.86 

0.06 
~ 

NOTES: 'Exponential covariance (12) after adjusting for location error. '' Exponential covariance (1 1) without adjusting for location emr using 
the intended lag. 'The MSE for the covariance after adustin for location error. dThe MSE for the covariance without adjusting for Idcation 
error. Relative change in the expected MSE, found as IOO(dSE' - MSE")/ MSEd. 

(i) As o2 increases so does the absolute effect of location error on the covariance. 
(ii) WhiL the relative change in the MSE is insensitive to 0, the magnitude of the 

MSE is sensitive to 0. 
(iii) Both the relative change in and the magnitude of the MSE are affected by h. 
In two-dimensional Euclidean space, assume location error p(s) !!i N ( 0 ,  o2 Z2) s E 

D C q2 and the covariance is modeled by the isotropic Gaussian covariance function 

C(h) = o2 exp{ -?}, 
where o2 is the variance of Y(*), h is the intended lag, and $ is a scale parameter. Then, 

C(h) = 

Similar to the previous discussion, Figure 5 and Table 2 show the consequences of 
iid normal location error on the Gaussian covariance function in W. Comparing 
Tables 1 and 2, we draw the same three conclusions as we did for iid uniform error in 
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0 5 10 15 20 25 
intended spatial lag 

FIG. 5. Curve A is the Gaussian Covariance (14) after Adjusting for Location Error in 3'. Curve B Is the 
Gaussian Covariance (13) without Adjusting for Location Error in 3'. 

32l. However, the magnitude of the effect of location error depends on the covariance 
model. For 8 = 4 = 50 and h = 0, the covariance after adjusting for location error is 
930.80 in the uniform-exponential case (Table 1) and 984.25 in the normal-Gaussian 
case (Table 2). In either case, these values are to be compared to 1,000, the covari- 
ance without adjusting for location error. 

We must also adjust the covariance between an intended site s and the location- 
error-free and measurement-error-free prediction site s,. For the design model and 
assuming zero-mean measurement error, the covariance after adjusting for location 
error between s and so is 

COV(Z(S),Y(So)) = JC(so- s + u)g(u)du, (15) 

where C ( ' )  is the covariance function for Y(') and the location error u has pdfg. 

2. KRIGING WITHOUT ADJUSTING FOR LOCATION ERROR 

The model used for kriging without adjusting for location error is 

Z(S)  = Y(s) + E ( S ) ,  

Y(s) = p(s) + 6(s) .  (16) 

Therefore, at location s, the observed attribute value Z ( s )  is equal to the mean p(s) 
plus spatially dependent error 6(s) plus measurement error ~ ( s ) .  Kriging finds the 
best linear unbiased predictor at a given location for a known covariance or variogram 
model. If ~ ( s )  = p, for all s E D, we can use ordinary kriging to predict the value of 
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TABLE 2 
The Effect of iid Gaussian Location Error on the Gaussian Covariance Function in R2 

Cue  

I Q=5O,h=O 
@ = 50, h = 25 
@ = 50, h = 100 
Q = 100, h = 0 
Q = 100, h = 25 
Q = 100, h = 100 
@ = 200, h = 0 
I$ = 200, h = 25 
Q = 200, h = 100 

I1 Q = 50, h = 0 
Q = 50, h = 25 
B = 50. h = 100 

COW‘ CO“” MSE‘ M S E ~  

984.25 
769.56 
19.20 

996.50 
935.90 
367.88 
999.00 
983.53 
778.22 

862.07 
694.94 
27.41 

1o00.00 
778.80 

18.32 
1o00.00 
939.41 
367.88 

1000.00 
984.50 
778.80 

1o00.00 
778.80 

18.32 

232 
4280 

46 
16 

440 
1034 

1 
32 

309 

13774 
36474 

952 

474 
4299 

47 
32 

452 
1034 

2 
32 

309 

32567 
46516 

99 1 

Percent Change‘ 

-51.05 
-0.44 
-2.13 

-50.00 
-2.65 

0.00 
-50.00 

0.00 
0.00 

-57.71 
-21.59 
-3.94 ~ ~~ 

& = lob. h = 0 961.54 1000.00 1427 29% -51 96 - ___ _.__ -- _ _  
4 = 1 0 0 ; h = 2 5  905.46 939.41 4682 5947 -21.27 
Q = 100, h = 100 367.60 367.88 10164 10165 -0.01 
Q = 200, h = 0 990.10 1000.00 100 199 -49.75 
Q = 200, h = 25 974.90 984.50 378 466 - 18.88 
@ = 200, h = 100 773.00 778.80 3001 3025 -0.79 

111 I$ = 50, h = 0 384.62 1000.00 87494 474053 -81.54 
Q = 50, h = 25 349.36 778.80 92349 279979 -57.71 
Q = 50, h = 100 82.58 18.32 27361 31216 - 12.35 
Q = 100, h = 0 714.29 1000.00 51023 139518 -63.43 
Q = 100, h = 25 683.10 939.41 58076 129898 -55.27 
Q = 100, h = 100 349.67 367.88 61375 61923 -0.88 
Q = 200, h = 0 909.09 1000.00 7295 15966 -54.31 

Q=200,h=100 724.28 778.80 25945 29435 -11.86 
Q = 200, h = 25 896.27 984.50 9311 17662 -45.75 

NOTES: Gaussian covariance (14) after adjusting for location error. hGaussian COVdnance (13) without adjusting for location error, using the 
intended lap ‘The MSE for the covariance after ad’ustin for location error. dThe MSE for the covariance without adjusting for location error. 
a Relative c lunge in the expected MSE, found a IdO(M&< - MSE“)/ MSEd. 

the Y(’)  process at a location so E D. If p(s) = f(s)’p, where f(s) and p are defined as 
in ( l ) ,  then we can use universal kriging for prediction. The universal (and ordinary) 
kriging predictor is P(Z;s , )  = h‘Z, where h is an optimal (minimizes mean squared 
prediction error) vector of kriging coefficients and Z is the observed attribute (data) 
vector. The simplification to ordinary kriging (where q = 0 and fo(s) 1) is straight- 
forward. 

The assumptions (1) are made more specific as follows: 

B1. Let Y(’) be a spatial random process with E(Y(r)) = f(r)’P; r E D, where the 
(q+ l )Xl  vector of known explanatory variables is f(’) = ( f j ( ’ ) : j  = 0,1, ...,q} 
and p is a (q+ l )x  1 vector of unknown regression coefficients. We write the 
(q+ 1) Xn matrix F’ 

B2.  Let C(r2 - rl) = o2 &(rz - rl) be the covariance function of Y(’), where o2 
is the variance of Y(’), &(‘) is a valid parametric class of correlation models, 
0 E 0 is an m X 1 vector of correlation-model parameters, and 0 is an open 
set in W’. 

(f(sl), . . . ,f(s,,)). 

Then, the kriging coefficients are given by 

h’ = b ‘ ( F ’ K - ’ F ) - W - l  + kX-1 , 

where b = f(so) - FK-Ik, F is the nX(q+ 1) matrix of  explanatory variables at S ,  f(so) 
is the vector of explanatory variables at so, K is the n x n correlation matrix between 
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Z(') at S ,  and k is the vector of correlations between Y( ') at s, and Z( ') at S. The uni- 
versal kriging prediction variance is, 

o~(s,) = 02(1 - kK-'k + b ( F K - ' F ) - ' b )  - 0,". 

Proofs of these results can be found in Cressie (1993, pp. 128 and 153-55). Note that 
the kriging predictor and the prediction variance depend on the correlation matrix, 
whose entries are functions of the lag. 

3. KRIGING AFTER ADJUSTING FOR LOCATION ERROR (KAALE) 

Assuming (l), the choice of kriging weights is a function of the lag. Kriging method- 
ology assumes that the lag is known without error. In this section, we develop method- 
ology for kriging after adjusting for location error (KAALE). We build upon standard 
kriging methodology by adjusting the component parts to include location error. 

The KAALE predictor is a linear combination of the attribute data, h'Z, where h is 
an n X 1 vector of kriging coefficients. The KAALE results differ from those of stan- 
dard kriging because expectations and covariances have to be adjusted for location 
error using (9) and (lo), respectively. 

Assuming B1 and B2, the matrix of explanatory variables after adjusting for loca- 
tion error F, is 

where V;( ' ) : j  = O , l , .  . . ,4) are known functions, typically polynomial trend terms. The 
optimal vector of kriging coefficients h, after adjusting for location error is 

where b, = f(s,) - F,'Z$-'kp; Fp is defined in (17); is the correlation matrix given 
by (10); and kp is the correlation vector given by (See Proposition 1 in the Ap- 
pen& for details.) 

The prediction variance o~(s,) is 

c$(s,) = 0'(1 - YZ$,-lkp + b;(I$Z$-'Fp)-'bp] - 0," , 

where 0," is the measurement-error variance. (See Proposition 2 in the Appendix for 
details.) 

In (lo), we give Cp( '), the covariance after adjusting for location error. While Cp( ') 
will be positive semidefinite if C(*) in (1) is positive semidefinite, the method-of- 
moments estimator of C, may not be positive semidefinite. Define, 

1 ep(h) = - C ( Z ( S , )  - Z)(Z(sj) - Z) , IN(h)l N(h) 
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where N(h) = ((ij): sj - si = h], IN(h)l is the number of pairs of sites separated by h, 
1 
n and z = -xZ(s , ) .  In practice, we let N(h) = ( ( i j ) :  sj - si E (h - Ah, h + Ah)], 

where Ah is a bandwidth. To insure that C, is positive semidefinite, we fit a valid co- 
variance model, after adjusting for location error, to (18). Estimation of the parame- 
ters proceeds similarly to estimation of the parameters of the covariance model 
without adjusting for location error (see, for example, Cressie 1993, section 2.4). 

4. SIMULATION STUDY 

In this section, we investigate the effect of location error using a simulation study. 
We assume an exponential covariance function in 31’, and use a 26 factorial design 
where the factors are the prediction location, the measurement-error variance, the 
scale parameter (amount of spatial dependence), the location-error variance, the 
sample size, and the trend. The spatial domain D is the one-dimensional subset of 31’ 
from 100 to 200. The “low” level of the sample size, n = 20, corresponds to the in- 
tended sites S = (100,105, ..., 195) and the “high level of the sample size, n = 40, to 
the intended sites S = ( 100,102.5,. . .,197.5}. Data are generated according to the de- 
sign model (8) and uniform errors A2. 

Levels for the six factors are given in Table 3. The low level of the prediction site, 
so = 155, corresponds to a location near the middle of the spatial domain and the high 
level, s, = 200, to a location on the boundary. The low level of the measurement error 
variance, 0: = 10, corresponds to small measurement error and the high level, 0: = 
10,000, to large measurement error. The low level of the scale parameter, 8 = 5, cor- 
responds to localized spatial dependence and the high level, 8 = 50, to longer-range 
spatial dependence. The low level of the location error variance, 0; = 1, corresponds 
to small location uncertainty and the high level, 0; = 64, to large location uncertainty. 
The low level of the trend, p ( r )  = 1000, corresponds to a constant mean and the high 
level, p ( r )  = 1000 + r - .OP ,  to a quadratic trend that reaches its maximum value 
when r = 100 and its minimum value when r = 200. 

For the sixty-four combinations of the experimental factors, we perform a Monte 
Carlo simulation study as follows: 

(i) For each of five hundred realizations, realized sites R are generated by adding 

iid uniform location error on ( -&Gp, &Jp)  to each of the intended sites S. 

TABLE 3 
Factors for the Monte Carlo Simulation Study in 3’ 

Factor Low Level High Level 

Prediction site 
Measurement-error variance 

Range parameter 
Location-error variance 

s,, = 155 

0 = 5  

0,“ = 10 

0,‘= 1 

s,, = 200 
0,“ = 10,000 

0; = 64 
0 = 50 

Sample size n = 20 n = 40 
Trend ”no trend bstrong trend 

NOTES: “No trend corresponds to the constant mean p(r) = 1W0, where r is the realized location. Strong trend corresponds to the mean 
function p(r) = loo0 + r - .01P, where r is the realired location. 



278 1 Geographical Analysis 

(ii) For each realization, R and the prediction site s, are used to generate a Gauss- 
ian spatial random vector according to the exponential covariance function 
(11). This gives (Y', Y(so))'. 

(iii) For each realization, iid normal measurement error is added to Y. This gives 
the observed values Z. 

(iv) For each realization, the kriging predictor at so, P(Z; so), is found using (i) the 
intended sites and the exponential covariance (11) without adjusting for loca- 
tion error and (ii) the intended sites and the exponential covariance (12) after 
adjusting for location error. 

The bias and the mean squared prediction error (MSPE) of the predictor P(Z; so) 
are 

Bias(P(Z; s,)) = E(P(Z; so) - Y(s,)) , 

MSPE(P(Z; s,)) s E((P(Z; s,) - Y(s,))') . 

We estimate these quantities from the simulation as follows: 

1 
500 

5oo 
Bias(P(Z;s,))= - [P(Z;s,)(') - Y(so)(~)  

1 500 2 
MSPE (P(Z; so)) = - [p(Z; so)(i)  - Y(s0)(')] , 500 i= l  

where i denotes the ith realization simulated. We have simplified the analysis, isolat- 
ing the effect of location error on kriging by assuming that the mean and covariance 
functions are known. Hence, the study does not enable us to investigate relationships 
between mean-function estimation, covariance estimation, and kriging. 

The Monte Carlo estimators (19) and (20) are calculated for the exponential co- 
variance (11) without adjusting for location error and the exponential covariance (12) 
after adjusting for location error. Tables 4 and 5 give results of the study. A value of 0 
represents the low level of the factor and a value of 1 represents the high level. Table 
6 gives an analysis of variance (ANOVA) of the difference in the MSPE between krig- 
ing without adjusting for location error and kriging after adjusting for location error 
(KAALE). The ANOVA partitions the total sum of squares into sums of squares due 
to various treatments and a residual sum of squares. Associated with each sum of 
squares is its degrees of freedom; mean squares are obtained by dividing sums of 
squares by their corresponding degrees of freedom. The corresponding variance ratio 
(VR) for each combination of factors is calculated as 

Mean square treatment 
Mean square residual 

VR = 

A large VR implies differences due to the treatment. We pool all treatments involving 
four or more factors to obtain the residual sum of squares. In an initial run of the full 
model (that is, all treatments), those of degree four or more had small mean squares. 

From the tables, we conclude: 
(i) The measurement-error variance plays an important role. At the high level of 

o", kriging without adjusting for location error and KAALE both have larger bias and 



TABLE 4 
Results of the Monte Carlo Simulation Study for the Exponential Covariance Function in 3l' for n = 20 

Site a? e 0,: trend n %iap "MSPE " E i m  "MSPE 

0 0 0 0 0 0 - 1.52 281 -1.52 283 
1 0 0 0 0 0 - 1.94 845 -1.93 844 
0 1 0 0 0 0 -3.62 9749 -3.63 9882 
1 1 0 0 0 0 - 1.99 2667 -1.94 2752 
0 0 1 0 0 0 -0.49 40 -0.49 40 
1 0 1 0 0 0 -0.86 180 -0.85 180 
0 1 1 0 0 0 -2.60 9530 -2.60 9564 
1 1 1 0 0 0 -0.08 8834 -0.07 8870 
0 0 0 1 0 0 -3.21 1334 -2.66 1251 
1 0 0 1 0 0 -0.73 823 -0.83 795 
0 1 0 1 0 0 -5.31 10538 -3.29 10250 
1 1 0 1 0 0 -0.78 2633 -0.37 2360 
0 0 1 1 0 0 -0.94 269 -0.57 212 
1 0 1 1 0 0 0.13 244 -0.12 201 
0 1 1 1 0 0 -3.04 9630 -1.25 7761 
1 1 1 1 0 0 0.91 8977 1.28 5113 
0 0 0 0 1 0 -3.19 2017 -3.18 2017 
1 0 0 0 1 0 -3.42 2556 -3.39 2553 
0 1 0 0 1 0 -5.23 11490 -5.22 11491 
1 1 0 0 1 0 -3.86 10380 -3.75 10584 
0 0 1 0 1 0 -2.21 1864 -2.20 1864 
1 0 1 0 1 0 -2.49 1619 -2.40 1619 
0 1 1 0 1 0 -4.25 11361 -4.24 11362 
1 1 1 0 1 0 -1.14 16346 -1.12 16386 
0 0 0 1 1 0 -3.99 3272 -3.37 3282 
1 0 0 1 1 0 -2.73 2926 -2.75 2770 
0 1 0 1 1 0 -6.04 12408 -5.46 12495 
1 1 0 1 1 0 -3.17 10630 -2.70 8771 
0 0 1 1 1 0 -1.72 2215 -1.10 2218 
1 0 1 1 1 0 -1.21 2408 -1.82 1948 
0 1 1 1 1 0 -3.76 11509 -3.21 11559 
1 1 1 1 1 0 0.05 17060 -0.17 9879 

NOTES: "Biap and M S P E  are found usin the ex 
the exponentid covariance (12) atter azusting E r  location error. 

nential covariance (11) without adjusting for location emr. "Biap and M S P E  are found using 



TABLE 5 
Results of the Monte Carlo Simulation Study for the Exponential Covariance Function in %' for n = 40 

Site 0: e 0; trend n 

0 0 0 0 0 1 
1 0 0 0 0 1 
0 1 0 0 0 1 
1 1 0 0 0 1 
0 0 1 0 0 1 
1 0 1 0 0 1 
0 1 1 0 0 1 
1 1 1 0 0 1 
0 0 0 1 0 1 
1 0 0 1 0 1 
0 1 0 1 0 1 
1 1 0 1 0 1 
0 0 1 1 0 1 
1 0 1 1 0 1 
0 1 1 1 0 1 
1 1 1 1 0 1 
0 0 0 0 1 1 
1 0 0 0 1 1 
0 1 0 0 1 1 
1 1 0 0 1 1 
0 0 1 0 1 1 
1 0 1 0 1 1 
0 1 1 0 1 1 
1 1 1 0 1 1 
0 0 0 1 1 1 
1 0 0 1 1 1 
0 1 0 1 1 1 
1 1 0 1 1 1 
0 0 1 1 1 1 
1 0 1 1 1 1 
0 1 1 1 1 1 
1 1 1 1 1 1 

0.41 
0.75 

-3.01 
-5.34 
0.14 
0.14 

-3.25 
-8.60 
-2.03 
3.05 

-5.89 
-3.00 
-1.04 
0.96 

-4.63 
-8.43 
-5.41 
-4.53 
- 10.27 
-11.73 
-5.67 
-4.90 
- 10.52 
- 14.26 
- 10.47 
-5.00 
- 15.79 
- 12.70 
- 10.06 
-6.99 
- 15.38 
-17.11 

*MSPE 

387 
630 

10280 
4995 
51 
104 
9830 
9861 
1417 
895 

11780 
5170 
283 
230 

10328 
9962 
5282 
4337 
15506 
11640 
5095 
3806 
15185 
16267 
8801 
6579 
19098 
13851 
7766 
6332 
17786 
18751 

0.41 
0.70 

-3.13 
-5.61 
0.14 
0.14 

-3.22 
-8.60 
- 1.56 
3.96 

-4.97 
2.51 

-0.75 
1.81 

-3.76 
-0.80 
-5.40 
-4.58 
-10.26 
-11.96 
-5.66 
-4.88 
- 10.51 
- 14.21 
-9.83 
-4.02 
-15.15 
-8.04 
-9.40 
-6.17 
-14.70 
-11.21 

h~~~~ 

394 
629 

10611 
5325 
51 
104 
9717 
9845 
1318 
743 

10819 
2629 
217 
144 
7367 
3893 
5282 
4338 
15507 
12046 
5095 
3806 
15185 
16123 
8796 
6106 
19115 
9469 
7761 
5760 
17799 
10208 

N m s :  'Bias and M S P E  are found usin thee 
the exponential covariance (12) aker a&sting?or location error. 

onential covariance (11) without adjusting for location error. bBins and M S P E  are found using 



TABLE 6 
ANOVA of MSPE for Kriging without Adjusting for Location Error minus MSPE for Kriging after Adjust- 
ing for Location Error Using the Exponential Covariance in %' 

Factor Df Sum of Squares Mean Square VarianceRatio 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

22 

13995081 
21423012 
7688143 

30567077 
293764 

1756950 
11027381 
3034564 

15023376 
4337848 
73831 1 

7271 112 
24596640 

77702 
1361306 
5561343 

12321 
156 

213444 
1940449 

48290 
2703558 

11987175 
2788900 
521284 

2572816 
801473 
37346 

4832303 
808651 
32761 

52 18940 
57002 
3630 

41311 
1512285 

81225 
2809 

73984 
58202 
76591 

7940566 

13995081 
21423012 
7688143 

30567077 
293764 

1756950 
11027381 
3034564 

15023376 
4337848 
7383 1 1 

7271112 
24596640 

77702 
1361306 
5561343 

12321 
156 

213444 
1940449 

48290 
2703558 

11987175 
2788900 
521284 

2572816 
801473 
37346 

4832303 
808651 
32761 

5218940 
57002 
3630 

41311 
1512285 

81225 
2809 

73984 
58202 
76591 

360935 

38.775 
59.354 
21.301 
84.689 
0.814 
4.868 

30.552 
8.408 

41.623 
12.018 
2.046 

20.145 
68.147 
0.215 
3.772 

15.408 
0.034 

0 
0.591 
5.376 
0.134 
7.490 

33.211 
7.727 
1.444 
7.128 
2.221 
0.103 

13.388 
2.240 
0.091 

14.460 
0.158 
0.010 
0.114 
4.190 
0.225 
0.008 
0.205 
0.161 
0.212 
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larger MSPE than for the low level of o", For example, from Table 4, when all factors 
are low (000000) the bias and MSPE are -1.52 and 281 without adjusting for loca- 
tion error and -1.52 and 283 after adjusting for location error. Changing the mea- 
surement error to high (010000) yields bias and MSPE of -3.62 and 9749 without 
adjusting for location error and -3.63 and 9882 after adjusting for location error. 
This pattern holds regardless of the levels of the other factors. 

(ii) The location-error variance plays an important role. In general, when 0; is low, 
the bias and MSPE of kriging without adjusting for location error and KAALE are 
quite similar, regardless of the levels of the other factors. For the example cited 
above, 0; is low in both situations; we have already seen that the MSPE for krigin 
without adjusting for location error and the MSPE for KAALE are similar. When 4 
is high, the absolute bias is 15 percent to 50 percent greater and the MSPE is 10 per- 
cent to 30 percent greater for kriging without adjusting for location error. For exam- 
ple, for the treatment 001101, the bias and MSPE are -1.04 and 283 without 
adjusting for location error and -0.75 and 217 after adjusting for location error. 

(iii) The absolute bias and MSPE are markedly greater for high levels of location 
error when the scale parameter 9 is low (little spatial dependence) as compared to 
when it is high, regardless of whether or not an adjustment is made for location error. 
For example, consider kriging without adjusting for location error. Here the bias and 
MSPE for all levels low except for the location error (000100) are -3.21 and 1334; 
when the scale parameter 8 is also high (OOllOO),  the bias and MSPE are -0.94 and 
269. This agrees with simulation results reported by Griffith, Haining, and Arbia 
(1999) for error propagation in map overlay operations in a GIS. 

(iv) There is not a consistent relationship between the location of the prediction 
site and either the bias or the MSPE. For example, when all levels are low (000000), 
the bias and MSPE are -1.52 and 281 without adjusting for location error. Changing 
the site to high (lOOOOO), the bias and MSPE are -1.94 and 845. However, when the 
measurement error is high and all other factors are low (OloooO), the bias and MSPE 
without adjusting for location error are -3.62 and 9749. Changing the location of the 
prediction site to high ( l lOOOO),  the bias and MSPE are -1.99 and 2667. Similar re- 
sults occur after adjusting for location error. Thus, placing the site near the boundary 
does not lead to a predictable increase in bias or MSPE. 

(v) Table 6 shows that interactions involving multiple factors have large variance ra- 
tios suggesting other relationships that are quite complex. 

Results of the simulation study in C31l indicate the importance of using the most ac- 
curate positioning instrument possible (that is, with small 0;). For small levels of lo- 
cation uncertainty, kriging is not adversely affected by location error; however, as the 
level of location uncertainty increases, so does its effect on kriging. With large loca- 
tion uncertainty, KAALE performs markedly better than kriging without adjusting for 
location error. 

5. SUMMARY 

Location error that occurs because of the inability to match a predetermined col- 
lection of sites, or by knowingly introducing a location displacement, can be dealt 
with using the design model (5). Based on this model, we have developed expressions 
for the mean function and the covariance function that are adjusted for location error. 
We have used these results to develop kriging after adjusting for location error 
(KAALE). Theform of the kriging-coefficients vector and the prediction variance are 
unchanged-what changes are the values of the mean function and the correlation 
matrix. When the location error is substantial, KAALE performs markedly better 
than kriging without adjusting for location error. 
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APPENDIX 

To find the optimal kriging coefficients (, after adjusting for location error, we use 
the technique of Lagrange multipliers and write the constrained optimization prob- 
lem as the minimization of 

with respect to hl ,..., &,,mo,ml ,... m9. 

sume B1 and B2. The vector of universal kriging coeficients ( is given by 
PROPOSITION 1: Assume the design model for location error as given in (8), and as- 

and the vector of Lagrange multipliers m is given by 

m' = o'(f(s,) - F&,-lkJ'(F&,-lF,)-l , 

where bp = f( sJ - F;Z$-'b; Fp is the n x (q + 1 )  matrix of explanato y variables as 
defined in (1 7); €$ is the n x n correlation matrix given by (10); and k,, is the n x 1 
correlation vector given by (15). 

PROOF: Write Z(s) = E(Z(s)) + (,(s); s ( D ,  where from (9), 

We have seen in (10) that 

and in (15) that 

E(6,(s). 6(s , ) )  = JC(s0 - s + u)g(u)du 

Now, because of the unbiasedness condition, E(Y(s,)) = E 

prediction error is 
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Therefore, using the method of Lagrange multipliers to account for the unbiasedness 
condition, we wish to minimize, 

see, for example, Cressie (1993, p. 153). The standard universal kriging results (for 
example, Cressie 1993, p. 153) yield, 

PROPOSITION 2: Assume the design model for location error as given in (8), and as- 
sume B1 and B2 from above. The prediction variance is given by 

where bp = f(s,) - F“Z$-‘kp, Fp is the n X (9  + 1) matrix of explanato y variables as 
dejned in (1 7). I$, is t i e  n X n correlation matrix given by (lo), kp is the n X 1 corre- 
lation vector given by (15), and 0; is the measurement-error variance. 

PROOF: Using the expression for squared prediction error given in the proof of 
Proposition 1, and the unbiasedness constraint, we have 

Applying standard universal kriging results (Cressie 1993, p. 154) to h given in Propo- 
sition 1, we obtain 
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