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ABSTRACT: Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the
Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water
quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the
highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional
watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider
uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of
parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in
these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the
results of a previous application of the hybrid statistical ⁄ mechanistic watershed model SPARROW (Spatially
Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying ‘‘high
priority’’ areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds
throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional
stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking proce-
dure incorporates information on the confidence intervals of model predictions and the corresponding
watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the proba-
bility that individual watersheds are among a collection of watersheds that have the highest delivered nutri-
ent yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds
in the Mississippi ⁄ Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutri-
ent yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi,
Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed
into the highest 150 category; however, many more watersheds can be removed from consideration as not
belonging to the highest 150 category. Results from this ranking procedure provide robust information on
watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream
coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.
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INTRODUCTION

Over-enrichment of nutrients is a major problem
in many streams and rivers and can result in the
overabundance of benthic algae, phytoplankton, and
macrophytes. In addition to local effects, excessive
transport of nutrients has been linked to eutrophica-
tion of downstream lakes, bays, and estuaries, and
also linked to hypoxia in the Gulf of Mexico (USEPA,
2000). Under recommendations of the Clean Water
Action Plan in 1998, the United States Environmen-
tal Protection Agency (USEPA) developed a national
strategy for establishing water body-specific nutrient
criteria for rivers and streams, wetlands, lakes and
reservoirs, and estuaries (USEPA, 1998). This strat-
egy encouraged states and tribes to establish nutrient
standards sufficient to reduce nutrient concentrations
and improve the beneficial ecological uses of surface
waters. In addition, the Mississippi River ⁄ Gulf of
Mexico Watershed Nutrient Task Force (2008) estab-
lished a goal to reduce the size of the hypoxic zone in
the Gulf of Mexico to 5,000 km2, which will require
substantial reductions in nutrient loadings from the
Misssissippi ⁄ Atchafalaya River basin (MARB).

To achieve the nutrient standards under consider-
ation for rivers, streams, lakes, and reservoirs, and to
meet the goal for a reduced size of the hypoxic zone
in the Gulf of Mexico, nutrient loading from the
upstream watersheds will need to be reduced.
Although reducing nutrient loadings from all water-
sheds throughout the MARB would provide a compre-

hensive way to achieve these goals, it would not be
the most efficient strategy because not all watersheds
contribute equal quantities of nutrients to local
streams and downstream coastal waters, including
the Gulf of Mexico (e.g., Alexander et al., 2008). An
alternative strategy might be to target or rank water-
sheds based on the number of locations identified as
impaired by nutrients. The number of locations that
were classified as impaired within each of the 818
eight-digit Hydrologic Unit Code (HUC8) (Seaber
et al., 1987) watersheds in the MARB is shown in
Figure 1. Although this strategy identifies locations
that the individual states have reported to be
impaired by nutrients, this strategy has problems in
an overall ranking scheme because each state has
different criteria for identifying what locations are
impaired, and it is uncertain to what extent these
locations influence downstream waters.

A third strategy is to identify and rank the areas
contributing the largest proportion of the total load
and concentrate management action in these areas
(Ouyang et al., 2005; UW-CALS, 2005). Targeting
reduction efforts on a landscape scale is worthwhile
because unit-area nutrient export (expressed as
kg ⁄ km2 ⁄ year) from watersheds vary by up to several
orders of magnitude among streams across the Uni-
ted States (U.S.) (Alexander et al., 2008) and within
smaller regions, such as states (Corsi et al., 1997).
Approaches have been developed for targeting
management and other total maximum daily loads
activities within small watersheds (e.g., Tomer et al.,
2003), but only a few studies have attempted to

FIGURE 1. Number of Locations Within Each Eight-Digit Hydrologic Unit Code (HUC8) Watershed Identified as Being
Impaired by Nutrient Enrichment (the actual parent cause of impairment was either nutrients or oxygen depletion).

Data were obtained from State 303(d) lists submitted to and approved by the USEPA from 2002 to 2006.
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target watersheds at broad geographic scales (such as
targeting specific river basins or specific states in the
MARB) (Goolsby et al., 1999; Ouyang et al., 2005;
Alexander et al., 2008; Diebel et al., 2009). Diebel
et al. (2009) developed a predictive model to estimate
the sediment and phosphorus load reduction that
should be achievable following the implementation of
riparian buffers in watersheds throughout Wisconsin,
and used this information to rank the watersheds
based on their potential load reductions. Ouyang
et al. (2005) developed a GIS (geographic information
system)-based erosion model for the Great Lakes trib-
utaries to assess and compare their relative loadings
of sediments, status of conservation practices, and
their potential for further reductions to sediment and
contaminant loadings. Goolsby et al. (1999) used
multiple-regression techniques relating nitrogen
inputs from various sources and measured nitrogen
yields from 42 large drainage basins to estimate and
rank nitrogen yields from all of the large river basins
throughout the MARB. Alexander et al. (2008) used
the Spatially Referenced Regression On Watershed
attributes (SPARROW) model to estimate yields of
total phosphorus (TP) and total nitrogen (TN) from
small watersheds (median size of �60 km2) through-
out the MARB to the Gulf of Mexico, and used this
information to compare the relative contributions
from each state.

Watersheds can be ranked on the basis of their
respective loads, yields (by compensating for
watershed size), incremental yields (that part gener-
ated in individual stream-segment drainages), or
delivered incremental yields (by compensating for the
loss of nutrients with transport from each watershed
to the downstream receiving body) (Alexander et al.,
2008). Which of these characteristics should be used
in the ranking procedure depends on the reason for
the ranking. If one is most interested in the down-
stream receiving body, such as the Gulf of Mexico,
then a ranking based on delivered incremental yield
is appropriate. If one is more interested in delivery to
local streams, then ranking based on incremental
yields is appropriate.

Various types of models have been used to estimate
loads and yields in large watersheds and can support
the development and evaluation of watershed ranking
strategies. These models range from simple statistical
models, such as that in Goolsby et al. (1999) where
TN yields were estimated as a function of several
watershed attributes, to complex mechanistic simula-
tion models, such as the Soil and Water Assessment
Tool (Gassman et al., 2003; Neitsch et al., 2005) that
simulate the primary hydrological, chemical, and bio-
chemical processes in the soil and during the trans-
port downstream. The SPARROW model (Smith
et al., 1997) has a hybrid statistical ⁄ mechanistic

structure, which includes aspects of these two
approaches and takes advantage of their strengths.
All watershed models have estimation errors inherent
in their predictions; however, these errors are rarely
reflected in the watershed rankings that are devel-
oped from the model predictions of loads and yields.
A more statistically rigorous and robust ranking
would be to directly incorporate measures of the
uncertainties in model predictions. For example,
although a watershed may have a predicted load that
is higher than several other watersheds, the loads
(and thus the rankings) may not be statistically dif-
ferent. Thus, measures of the uncertainty in predic-
tions of incremental and delivered yields are
essential to develop reliable and informative ranking
strategies. Although prediction uncertainties can be
determined for mechanistic simulation models using
parameter estimation methods (e.g., Doherty, 2004),
these methods are difficult to use with complex,
highly parameterized models (Beven, 2002) and may
not incorporate all of the uncertainties in the model’s
predictions. These parameter estimation methods are
especially challenging to use in large watersheds and
river basins, such as the Mississippi and its major
tributaries, where mechanistic models are rarely
applied. By contrast, prediction uncertainties are
comparatively easy to generate using statistical mod-
els, such as SPARROW, which have been applied in
large river basins, including the Mississippi and
Atchafalaya (Goolsby et al., 1999; Alexander et al.,
2008).

In this paper, we use results from a published
SPARROW model (Alexander et al., 2008) to estimate
and rank TP and TN incremental yields from the 818
HUC8 watersheds throughout the entire MARB that
are delivered to the Gulf of Mexico (for this analysis,
taken to be the reach containing the U.S. Geological
Survey monitoring station near St. Francisville, Loui-
siana). We describe and demonstrate robust statisti-
cal bootstrapping procedures to place confidence
limits on nutrient yield predictions from SPARROW,
and to place confidence limits on the individual ranks
of the HUC8 watersheds. This information is then
used to estimate the probability that each HUC8
watershed is among a collection of watersheds that
contributes the largest quantities of nutrients to the
Gulf of Mexico. We illustrate the application of the
procedure to 818 watersheds in the MARB by identi-
fying 150 watersheds that have the largest delivered
nutrient yields (i.e., ‘‘top 150’’). The selection of the
number 150 is arbitrary and the method presented
here could be applied to any user-selected number of
watersheds. Results from this ranking procedure can
be used by state and federal managers to target
a set of ‘‘high priority’’ inland watersheds, where
additional stream monitoring and evaluations of
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nutrient-reduction strategies could be undertaken.
We also demonstrate how the results can be used by
specific states to prioritize the target watersheds
based on nutrient deliveries to local streams. This
method of ranking is not a fully optimal approach to
concurrent management of coastal and inland waters.
Watersheds that rank near the lowest end of the
spectrum in terms of nutrient delivery to the Gulf of
Mexico, with management, can be expected to
improve the water quality of local receiving waters.
These local improvements may be of similar or
greater value compared to the incremental improve-
ments in the coastal receiving waters.

METHODS

SPARROW Model

SPARROW is a GIS-based watershed model that
uses a hybrid statistical ⁄ mechanistic approach to esti-
mate nutrient sources, transport, and transformation
in terrestrial and aquatic ecosystems of watersheds
under long-term steady state conditions (Smith et al.,
1997; Alexander et al., 2008). The present application
of SPARROW includes nonconservative transport,
mass-balance constraints, and water flow-paths
defined by topography, streams, and reservoirs, based
on a detailed stream-reach network (1:500,000 scale)
with reach catchments (median size �60 km2) delin-
eated from 1-km digital elevation models (Nolan
et al., 2002); the MARB contains �25,000 reaches.
Given a specification of nutrient sources, the model is
used to estimate nutrient delivery to streams from
subsurface and overland flow (‘‘land-to-water’’ deliv-
ery) in relation to landscape properties, including cli-
mate, soils, topography, drainage density, and
artificial drainage. A brief description of the SPAR-
ROW model is given in the Appendix, and a detailed
description of the model is given in Schwarz et al.
(2006).

The SPARROW model was used to simulate the
mean annual flux of TN and TP from each reach of
the �25,000 reaches in the MARB as a function of ten
nutrient sources (eight for TP), six climatic and land-
scape factors that influence land-to-water delivery
(five for TP), and two factors describing nutrient
removal in streams and reservoirs (Alexander et al.,
2008). Nutrient sources included atmospheric deposi-
tion of nitrogen, urban sources, and nutrients in the
runoff and subsurface flow from agricultural and
other lands. The population within the drainage area
of each reach was used as a surrogate for all urban
point and nonpoint sources of nutrients. Agricultural

sources were separated according to their association
with either cultivated croplands or nonrecovered man-
ure. Cropland includes nutrient inputs from biological
N2 fixation (soybeans, alfalfa, and hay), commercial
fertilizer use on seven major crops, and animal man-
ure that is recovered from confined animals on nearby
farms and applied to crops as fertilizer. Nonrecovered
manure pertains to nutrients derived from unconfined
animals in pastures or losses from feedlots.

Model parameters for the sources, land-to-water
delivery factors, and instream-decay terms were sta-
tistically estimated using weighted nonlinear least
squares (WNLLS) regression, based on a calibration
to the long-term mean annual loads (1975-1995) (Sch-
warz et al., 2006) of TN and TP (i.e., the steady state
response variables in the model) at 425 monitoring
stations in the conterminous U.S. that were part of
the National Stream Quality Accounting Network
(Hooper et al., 2001). Most of the stations used in the
calibration have relatively large drainage areas: 90%
of stations had drainages >820 km2. Mean annual
loads for each station were standardized to the 1992
base-year to give an estimate of the mean nutrient
load that would have occurred in 1992 if the mean
flow conditions from 1975 to 2000 had prevailed
(nutrient source inputs to the model are those for
1992). Although the model cannot be used to evaluate
year-to-year changes, it also is not biased by the
short-term meteorological variability that may occur
throughout the study area in a given year. The spe-
cifics about the source and transport process specifi-
cation, calibration, accuracy, and precision of the
final models are presented in Alexander et al. (2008).

The 818 HUC8 watersheds in the MARB (median
size = 3,400 km2) are used as the units for evaluating
uncertainties in the rankings of SPARROW predic-
tions of the nutrient incremental yields that are
delivered to the Gulf of Mexico. The incremental
nutrient yield (and delivered yield) was computed for
each HUC8 watershed by summing the loads (or
delivered loads) from each reach within the HUC8
watershed, and then dividing by the total area of the
HUC8 watershed. The HUC8-level aggregation of the
�25,000 reach-level SPARROW predictions in the
MARB provides the most reliable spatial scale for
evaluating the model predictions, one that is gener-
ally consistent with the spatial scale of the monitor-
ing stations used to estimate the model parameters.

The model predictions of the incremental yields
and delivered incremental yields that are used in the
HUC8 ranking procedures reflect the simulated
nutrient yields in circa 2002. The simulated yields
account for changes from 1992 to 2002 in agricultural
sources (biological N2 fixation in crops, farm fertilizer
use, and crop harvesting); however, changes from
1992 to 1997 are used for animal manure nutrients
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and from 1990 to 2000 are used for population as
described in Alexander et al. (2008). The coefficients
of the calibrated model are unchanged for 2002 simu-
lations; steady state conditions are also assumed
based on long-term average streamflow over the 1975
to 2000 period. The predicted yields for 2002 only
reflect changes in nutrient sources and are indepen-
dent of any actual changes in streamflow from 1992
to 2002. The changes in agricultural sources also
account for changes in the marginal rates of crop pro-
duction from 1992 to 2002 (i.e., harvested biomass
relative to nutrient inputs) (note that the estimated
1992 base-year model implicitly reflects crop produc-
tion related to climatic conditions and farm practices
and technologies in that year). The predicted yields
for 2002 do not include the effects of any changes in
farm management practices unrelated to crop fertil-
izer use and production or animal populations (e.g.,
addition of buffer strips or improvements in feedlot
operations).

Confidence Limits in SPARROW Predictions

The actual delivered fluxes from SPARROW are
assumed to depend on a multiplicative error term
that represents other sources and processes not
included in the SPARROW analysis. Because of this
residual term, and because the determination of pre-
dicted flux depends on coefficients that are estimated
via statistical methods, the delivered yields and the
ranking of those yields across HUC8 watersheds are
subject to uncertainty. Because of the nonlinear man-
ner in which the estimated coefficients enter the
model, it was necessary to use bootstrap methods
(Schwarz et al., 2006) to assess the uncertainty. Boot-
strap analyses were also used to correct for potential
bias caused by log retransformations in the yield pre-
dictions, an additional consequence of the nonlinear
model specification. A brief summary of the bootstrap
method is presented here; a full description of the
bootstrap methodology is provided in the Appendix to
this paper.

The bootstrapping method was implemented by
performing 200 repeated calibrations of the SPAR-
ROW model using randomly selected integer weights
(which sum to 425, the total number of monitored
reaches in both the TN and TP models) applied to
each of the squared residuals at monitored reaches,
resulting in 200 realizations of the estimated coeffi-
cients, yields, delivered yields, and residuals. The dis-
tribution of the estimated delivered yields for each
reach from the 200 iterations was used to estimate
the standard errors in the yields from SPARROW.
The estimated confidence interval for delivered yields
required explicit consideration of the distribution of

residuals in the model, rather than just the summary
statistical properties of the residuals. The bootstrap
method for incorporating the distribution of the
model residuals is based on the empirical distribution
of the combined bootstrap-iteration estimate of the
modeled component of delivered flux and a randomly
selected weighted error from the original 425 moni-
tored values obtained in the original calibration of
the model. The 90% confidence interval for the deliv-
ered incremental yield from each HUC8 was then
estimated using a ratio formulation of the hybrid
bootstrap confidence limit (see Shao and Tu, 1995
and Schwarz et al., 2006).

Statistical Significance of the HUC8 Rankings

The assessment of uncertainty in the ranks of the
delivered yields was also based on bootstrap methods.
Unlike the methods used to place confidence limits on
specific SPARROW predictions, the theoretical basis
behind the underlying assessment of uncertainty in
ranks was less rigorous. The bootstrapping method
was implemented by performing 200 repeated estima-
tions of the delivered incremental yields from each
HUC8 watershed. In each iteration, the delivered
incremental yields were estimated by multiplying the
modeled estimate of delivered incremental yield for

FIGURE 2. Distributions of Predicted Delivered
Incremental Total Nitrogen (TN) Yields for Three HUC8

Watersheds From the Bootstrapping Procedure, With
Two Selected Values From Specific Iterations.
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each watershed by a randomly selected, exponentiat-
ed, weighted model residual from the 425 residuals
estimated in the WNLLS regression calibration of the
SPARROW model. With each bootstrap iteration, a
different delivered incremental yield is obtained for
each of the 818 HUC8 watersheds. These estimates
are distributed around the delivered incremental
yield obtained directly from the original SPARROW
model and used in the original ranking (the distribu-
tions of these estimates are shown for three sites in
Figure 2). After each bootstrap iteration, the deliv-
ered incremental yields from the 818 watersheds are
ranked. Delivered incremental yields for two itera-
tions of this process are shown in Figure 2. On the
basis of the 200 different ranks for each HUC8
watershed (a different rank for each bootstrap

iteration), it is possible to (1) determine with what
certainty (probability) a specific watershed would be
ranked in, or not in, the top specified number of
watersheds and (2) estimate the confidence intervals
of the rankings. A specific watershed would be placed
in the top 150 contributing watersheds with 90% con-
fidence, if 90% or more of the time (‡180 of the 200
bootstrap iterations), the watershed ranked £150, and
would be placed out of the top 150 watersheds, if 90%
of the time the watershed did not rank £150.

Confidence intervals were placed on the rankings
for each HUC8 watershed on the basis of the percen-
tiles of the distributions of the 200 different ranks
from the bootstrapping procedure. The 5th and 95th
percentile of the distributions of the ranking from the
bootstrapping procedure represent the lower and

FIGURE 3. Distributions (deciles) of Incremental Yields (A) and Delivered Incremental Yields to the Gulf of Mexico
(B) of Total Nitrogen (TN) for the HUC8 Watersheds Within the MARB for Conditions Similar to 2002.
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upper bounds of the 90% confidence limits of the
rankings for each watershed.

RESULTS

Incremental Nutrient Yields by HUC8 Watershed

Incremental TN and TP yields describe the mass
of nutrients entering streams per unit area of the
incremental drainages, and are mediated by the
amount of nutrients supplied to the area and the cli-
mate and landscape properties that affect their
delivery to nearby streams. Incremental yields from

HUC8 watersheds in the MARB range from 9.4 to
6,900 kg ⁄ km2 ⁄ year for TN (Figure 3A) and 4.0 to
858 kg ⁄ km2 ⁄ year for TP (Figure 4A). Highest TN
and TP yields are generally in similar regions and
include many watersheds in the Central Mississippi,
Ohio, and Lower Mississippi River basins. The high-
est TN yields closely coincide with intense agricul-
ture in Indiana, Illinois, and Iowa, whereas highest
TP yields are spread over a larger area (often associ-
ated with urban areas) and shifted southward.
Differences in the geographic patterns in the yields
can be primarily explained by differences in the
types of agricultural and nonagricultural sources
that contribute nutrients and the presence of major
urban areas. Lowest yields for TN and TP are from
watersheds in the western regions of the MARB,

FIGURE 4. Distributions (deciles) of Incremental Yields (A) and Delivered Incremental Yields to the Gulf of Mexico
(B) of Total Phosphorus (TP) for the HUC8 Watersheds Within the MARB for Conditions Similar to 2002.

ROBERTSON, SCHWARZ, SAAD, AND ALEXANDER

JAWRA 540 JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION



where streamflows are lower and inputs of nutrients
are generally smaller.

Delivered incremental yield describes the amount
of the incremental yield that is delivered to some
downstream point, in this case the Gulf of Mexico,
after accounting for the cumulative effect of aquatic
removal processes (primarily denitrification for TN
and deposition in reservoirs for TP). Delivered incre-
mental TN yields from HUC8 watersheds range from
0 to 5,540 kg ⁄ km2 ⁄ year (Figure 3B) and delivered TP
yields range from 0 to 540 kg ⁄ km2 ⁄ year (Figure 4B).
Instream and in-reservoir losses result in much of
the TN and TP delivered to the Gulf of Mexico origi-
nating from similar regions: primarily from water-
sheds in the Central Mississippi, Ohio, and Lower
Mississippi River basins, especially those near large
rivers. Lowest delivered incremental yields were from
watersheds in the western regions of the MARB,
where streamflow is lower, inputs are generally smal-
ler, and longer river distances enhance instream
removal.

Although the magnitude of the incremental yields
and delivered incremental yields differ, the geo-
graphic patterns in incremental yields and delivered

incremental yields for TN differ only slightly, as seen
in the decile distributions in Figure 3; the highest
delivered TN yields occur a little further east than
the incremental yields. The largest differences in the
patterns are the result of decreases in delivery from
southern Minnesota and Iowa. There are larger
changes in the patterns for TP than for TN. The larg-
est changes in TP patterns are that the relatively
higher delivered yields are closer to the main rivers,
such as the Mississippi and Ohio Rivers, than were
the yields themselves. The largest relative decreases
in delivery occur in Arkansas, Tennessee, and Iowa,
and are primarily caused by losses in reservoirs. The
relative decreases can be best seen in eastern Ten-
nessee (Figure 4), where the relatively large incre-
mental TP yields are reduced by losses in large
reservoirs.

Ranking of HUC8 Watersheds by Nutrient Yields

Ranking the HUC8 watersheds throughout the
MARB by the predicted incremental yields or deliv-
ered incremental yields from SPARROW can be as

FIGURE 5. Map Showing the Top 150 HUC8 Contributing Watersheds Within the MARB to the Gulf of Mexico for TN (A) and TP (B) and
Maps Showing the Certainty With Which the Watersheds are Placed In or Out of the Top 150 Contributing Watersheds for TN (C) and TP (D).
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straightforward as sorting the predicted yields and
ranking them from 1 (highest yield) to 818 (lowest
yield). All incremental yields and delivered incremen-
tal yields and their respective rankings are given in
the Supporting Information material to this paper.
The results of the ranking process are shown for
delivered incremental yields for TN and TP in
Figures 5A and 5B (only the top 150 watersheds are
colored). Almost all of the top 150 watersheds are in
the Corn Belt or near the Mississippi River, with the
highest yields of TN being in northern Illinois and
central Indiana and highest yields of TP being from
watersheds along the Mississippi River, and in north-
ern Kentucky, and distributed through Missouri, Illi-
nois, and Indiana. The HUC8 watershed with the
highest TN and TP incremental yields encompasses
the area near Chicago. Therefore, if one were inter-
ested in placing management efforts only in a speci-
fied number of the highest contributing watersheds,
the watersheds to place efforts could be readily iden-
tified.

After sorting the HUC8 watersheds on the basis of
their delivered incremental yields and summing the
yields from the highest ranked watersheds to the
lowest, an accumulated yield plot can be created
(Figure 6). From this figure, it is possible to deter-
mine the minimum number of watersheds required to
reduce the total load to the Gulf of Mexico by a speci-
fied percentage or specified load in kg. For example,
if one wanted to obtain a 50% reduction in TN load-
ing to the Gulf of Mexico, it would require removing
all the TN loading from the top �150 HUC8 water-
sheds. If it were assumed that only 75% of the deliv-
ered load could be removed from each watershed,
then it would require that �225 watersheds be

included to obtain a �50% reduction. If only 50% of
the delivered load could be removed from each
watershed, then it would require that all of the 818
watersheds be included.

Effects of Uncertainty on the Ranking

Differences in the delivered incremental yields
from many of the HUC8 watersheds are quite small,
especially if the first few watersheds with the largest
difference in yields (Figure 7) are not included; there-
fore, small differences in predicted yields can have a
large impact on the ranking of the HUC8 watersheds.
To determine how confident we are in the predicted
yields from each watershed, 90% confidence limits on
each prediction from SPARROW were computed (Fig-
ure 7A). The 90% confidence limits for the prediction

FIGURE 6. Number of HUC8 Watersheds Required to Reduce
Various Percentages of the TN Load to the Gulf of Mexico as a
Function of the Percent Removal From Each Watershed. Arrows
indicate number of HUC8 watersheds to achieve a 50% reduction
for 100 and 75% removal of TN.

FIGURE 7. Delivered Incremental TN Yields as a Function of the
Rank of the HUC8 Watershed (A), 90% Confidence Limits (vertical
bars) Are Placed on Each Prediction. The value for each watershed
is color coded based on the certainty it is in or not in the top 150
contributing watersheds. (B) Illustration of the 90% confidence lim-
its (horizontal bars) on the ranks of six selected HUC8 watersheds;
the 90% confidence limits on the predictions (vertical bars) are also
given.
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of the yields from any specific HUC8 watershed were
quite large, typically within a factor of 2-3 of the ori-
ginal value. To determine how the uncertainty in the
predicted yields affect the ranking of the HUC8
watersheds, a bootstrapping procedure was conducted
to incorporate the uncertainty in the predicted yields
into the ranking process (see the Methods Section).
As a result of this process, 90% confidence limits were
placed on the ranks themselves (the 90% confidence
limits of the ranks are shown as horizontal bars for
six example sites in Figure 7B). The 90% confidence
limits on the ranks demonstrate that because of the
uncertainties in the SPARROW algorithms, our cer-
tainty in the specific ranking of any HUC8 watershed
is quite wide. For example, the 90% confidence in the
ranking of the Upper Wabash River watershed in
Indiana and Ohio, which was originally ranked
eighth with respect to delivered incremental TN
yields, ranges from 8 to 227, and the Pecatonica
River watershed in Illinois and Wisconsin that origi-
nally ranked 125, ranges from 26 to 320. The original
ranking for the delivered incremental yields for TP
and TN and their respective 90% confidence limits
are given for each HUC8 watershed in the Support-
ing Information material to this paper.

Having confidence limits in the yields and the
rankings of the yields, rather than having specific
values, makes it much more difficult to determine,
which HUC8 watersheds to suggest to implement
management efforts in, if only a selected number of
contributors are to be considered. For example, if we
want to identify which HUC8 watersheds are in the
top 150 contributors to the Gulf of Mexico (the
approximate number of watersheds for which loads
would have to be totally removed to obtain a 50%
reduction in the TN load), this uncertainty should be
considered. Given the wide 90% confidence intervals
in the yields, many of the watersheds that originally
ranked near 150, may or may not actually be in the
top 150. One approach to incorporate this uncertainty
is to use the information from the bootstrapping pro-
cedure, which was used to place confidence intervals
in the original ranking (Figure 7B). If a watershed
ranked in the top 150 in ‡95% bootstrapping itera-
tions, then we can say the watershed is in the top
150 with 95% confidence. If a watershed were in the
top 150 in ‡90% of the bootstrap iterations, then it
would be in the top 150 with 90% confidence, and so
on. Similarly, if a watershed ranked in the top 150 in
<5% of the bootstrap iterations, then it would not be
in the top 150 with 95% confidence. If a watershed
ranked in the top 150 in <10% of the bootstrap itera-
tions, then it would not be in the top 150 with 90%
confidence, and so on.

This information was then used to determine
which watersheds could be considered to be in the

top 150 for delivered incremental yields of TN and
TP to the Gulf of Mexico if uncertainty is accounted
for in the assessment (Figures 5C and 5D). With 95%
confidence, we can identify four HUC8 watersheds
for TN and one watershed for TP that are in the top
150 contributors. With 90% confidence, we can iden-
tify 11 watersheds for TN and three watersheds for
TP that are in the top 150 contributors (Table 1).
Most of the watersheds that we can confidently say
(with ‡75% confidence) are in the top 150 are in Indi-
ana, Illinois, and Kentucky. Most of these watersheds
have little urban inputs, except the HUC8 water-
sheds containing Chicago and Memphis. We can,
however, confidently identify many more watersheds
that are not in the top 150. With 95% confidence, we
can identify 444 watersheds for TN and 459 water-
sheds for TP that are not in the top 150 contributors,
and with 90% confidence, we can identify 513 water-
sheds for TN and 505 watersheds for TP that are not
in the top 150 contributors (Table 1). Most of the
watersheds that are not in the top 150 contributors
(with ‡75% confidence) are in the western part of the
MARB, where there is relatively low runoff, or in
Minnesota, Wisconsin, or in the eastern part of the
MARB where mostly forested areas exist. There are
more watersheds that we can say with confidence are
in the top 150 for TN than for TP because of the
more accurate TN SPARROW predictions and the
wider range in TN yields than TP yields. The distri-
butions of the HUC8 watersheds that we can say
with 75% confidence are in and not in the top 150 for
TN are similar to those for TP. The HUC8 water-
sheds that are classified as possibly being in the top
150 are those in areas that have been found to have
the highest yields by Goolsby et al. (1999). How confi-
dently we can classify whether each watershed is
in the top 150 and the relative importance of
urban areas are given in the Supporting Information
material to this paper.

TABLE 1. Number of HUC8 Watersheds In or Not in the
Top 150 Contributors to the Gulf of Mexico as a Function of the

Confidence in the Classification.

Confidence Limits (%)
Total

Nitrogen
Total

Phosphorus

Number of HUC8 watersheds in the top 150
95 4 1
90 11 3
75 61 22

Number of HUC8 watersheds not in the top 150
95 444 459
90 513 505
75 600 573

Note: HUC8, Eight-digit Hydrologic Unit Code.
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Even with the relatively large confidence limits pre-
sented here, the results from SPARROW can be very
useful in the ranking process for HUC8 watersheds in
the MARB or other smaller areas. For example, of the
818 watersheds in the MARB, only 218 for TN and 245
for TP are considered to possibly be in the top 150, the
remaining 444 (for TN) and 459 (for TP) watersheds
statistically rank above 150 and, therefore, can be
removed from special consideration (with 95% confi-
dence), or 600 (for TN) and 573 (for TP) watersheds
can be removed from special consideration with 75%
confidence. Therefore, this information can be used to
remove many areas from special consideration with
respect to their importance of their contributions to
loading to the Gulf of Mexico.

DISCUSSION

Ranking Over Different Geographical Scales

The ranking discussed thus far has focused on the
importance of export from specific HUC8 watersheds
to the overall loading to the Gulf of Mexico. Actual
implementation and prioritization of efforts, however,
are often done at a smaller scale, such as in a specific
state. An example of the ranking results for a given
state, Tennessee, is shown in Figure 8. If water-quality
managers in Tennessee are most interested in decreas-
ing the load to some downstream location, such as the
Gulf of Mexico, they could examine the delivered incre-
mental yields as previously discussed. If water-quality
managers are most interested in improving the water-
quality in local streams and reservoirs, however, they
may want to target or identify the watersheds based
on the nutrients delivered to local streams. In this
case, they would examine the incremental yields.
Which of these conditions managers are most inter-
ested in improving, affects the prioritization process.

If water-quality managers are most interested in
decreasing the number of locations that were identi-
fied as impaired (Figure 1), they would probably want
to compute the incremental yields from each of their
HUC8 watersheds and then rank them (Figure 8A). If
they are primarily interested in reducing the TP load
to the Gulf of Mexico, they would rank the delivered
incremental yields (Figure 8B). These two yields can
be quite different. In the case of TP, the differences in
the yields and ranking for the eastern and central
parts of Tennessee were primarily caused by the depo-
sition of TP in large reservoirs. This information can
assist managers in prioritizing efforts to improve local
streams and downstream coastal waters, such as the
Gulf of Mexico; however, the final overall ranking will

need to consider the relative importance of improving
local problems relative to downstream problems.

Statistical Models vs. Mechanistic Models

Statistical models require an extensive dataset of
stream monitoring sites with information for both the
dependent (average annual loads) and independent
variables (nutrient sources and environmental vari-
ables), whereas mechanistic models (i.e., without sta-
tistically estimated parameters) can be used to
simulate water-quality conditions with only very lim-
ited stream monitoring data. A more extensive data-
set, however, is required to characterize the complex
set of processes and state conditions in applications of
mechanistic models to large river basins. Hybrid sta-
tistical ⁄ mechanistic models, like SPARROW, share
many of the benefits of mechanistic simulation models
but also allow confidence limits to be reliably esti-
mated for the model’s predictions and watershed
rankings. The confidence limits on the individual pre-
dictions from SPARROW are generally large but
incorporate several sources of error, including error in
the estimations of the model due to the reliance on a
finite sample, and structural error in the prediction
algorithms due to factors that are not accounted for in

FIGURE 8. Distribution (deciles) of the Incremental Total
Phosphorus (TP) Yields (A) and Delivered Incremental TP Yields

(B) for the HUC8 Watersheds Within Tennessee.
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the model. Most mechanistic models, on the other
hand, simulate specific processes, but each simulation
usually only has one prediction for a given location
and confidence limits can be difficult to estimate.
Therefore, the specific rankings provided by many
mechanistic models may provide a false sense of accu-
racy in the final ranking among watersheds. Statisti-
cal approaches have been developed that attempt to
quantify the confidence limits in the predictions from
mechanistic models. For example, parameter estima-
tion methods, such as in the Parameter Estimation
model (PEST) (Doherty, 2004), can be applied to
mechanistic models to estimate uncertainties associ-
ated with the model coefficients and predictions and
hence provide an estimate of the confidence intervals
for predictions of nutrient yield. However, it is diffi-
cult to reliably quantify the structural errors of mech-
anistic models without detailed calibration datasets
(Moore and Doherty, 2005), which are especially diffi-
cult to obtain for large watersheds and river basins.
Only with the confidence limits incorporated into the
final predictions from watershed models can one
determine if the small simulated differences in nutri-
ent yields and rankings among watersheds are real
and should be used to prioritize the targeting of
watersheds for nutrient management.

SPARROW Modeling at Smaller Regional Scales

The results presented in this paper were based on
SPARROW models calibrated using 425 sites distrib-
uted throughout the U.S. (Alexander et al., 2008).
These models enabled yields and confidence limits in
these yields to be estimated for rivers throughout the
country. Within the MARB, there was �2.5-3 orders
of magnitude variation in the incremental TN and TP
yields, with even a wider range in the delivered incre-
mental yields, whereas, the 90% confidence in the
predictions were only within a factor of 2-3 of the pre-
dicted value. These predictions, with the specified
confidence ranges, enable general management deci-
sions to be made; however, the certainty in the pre-
dicted values and the ranking may not be adequate to
guide local decisions. If regional SPARROW models
were developed that incorporate additional water-
quality data from other federal, state, and local agen-
cies, especially from small watersheds, and incorpo-
rate better defined watershed attributes, such as
point source data, then more specific sources and
delivery terms may be determined. Finer scale
regional SPARROW models may enable yields to be
quantified more accurately at smaller than a HUC8
scale, and should result in smaller errors in model
coefficients, narrower confidence limits on predictions,
and enable a more precise watershed ranking process.

CONCLUSIONS

To reduce the size of the hypoxic zone in the Gulf of
Mexico and improve the water quality of rivers,
streams, and other receiving water bodies, manage-
ment efforts must be implemented at specific locations
in the landscape to reduce nutrient runoff. The meth-
ods described herein could be applied to identify and
target management efforts (including additional
stream monitoring) in the areas producing the highest
nutrient yields. Various types of numerical models can
be used to predict yields over large geographical areas,
and it is a straightforward process to use the output
from these models to rank or prioritize management
efforts. However, all numerical models have estimation
errors in their predictions; these uncertainties should
be considered in efforts to prioritize watersheds for
management. Whereas, it is very difficult to estimate
the overall uncertainty in many mechanistic models; it
is comparatively easier to estimate the overall uncer-
tainties in the predictions from statistical models.

In this paper, we used results from the hybrid sta-
tistical ⁄ mechanistic watershed model, SPARROW, to
estimate delivered incremental yields from the 818
HUC8 watersheds in the MARB and then rank the
watersheds based on their respective yields. Within
the MARB, there was �2.5-3 orders of magnitude
range in the incremental yields, with even a wider
range in the delivered incremental yields, whereas,
the 90% confidence in the predictions were only a fac-
tor of 2-3 of the predicted values. The highest TN and
TP incremental yields and delivered incremental
yields were generally in similar regions of the MARB:
watersheds in the Central Mississippi, Ohio, and
Lower Mississippi River basins. A robust statistical
bootstrapping procedure was presented, which uses
the uncertainties in the nutrient yield predictions
(from SPARROW), to place confidence limits on the
individual ranks. Information from the bootstrapping
procedure was then used to estimate the probability
that each HUC8 watershed is among a collection of
watersheds that contributes the largest quantities of
nutrients (e.g., ‘‘top 150’’) to the Gulf of Mexico.
Because of the wide confidence intervals in the predic-
tions from SPARROW, only a few watersheds could
be placed into the top 150 with statistical certainty;
however, many more watersheds could be removed
from consideration of being in the top 150. This rank-
ing procedure was also demonstrated for use by a spe-
cific state to prioritize the targeting of watersheds for
local improvements in streams and reservoirs.

The information presented here for the MARB
could assist managers in prioritizing management
efforts based on improving nutrient conditions in
local streams and improving nutrient conditions in
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downstream coastal waters, such as the Gulf of Mex-
ico. This method of ranking is not a fully optimal
approach to concurrent management of coastal and
inland waters. For example, watersheds that rank
near the lowest end of the spectrum in terms of nutri-
ent delivery to the Gulf of Mexico, with management,
can be expected to improve the water quality of local
receiving waters. These local improvements may be
of similar or greater value compared to the incremen-
tal improvements in coastal receiving waters.

APPENDIX

Brief Description of the SPARROW Model

SPARROW is a GIS-based watershed model that
uses a hybrid statistical ⁄ mechanistic approach to
estimate nutrient sources, transport, and transforma-
tion in terrestrial and aquatic ecosystems of water-
sheds under long-term steady state conditions (Smith
et al., 1997; Alexander et al., 2008). SPARROW
includes nonconservative transport, mass-balance
constraints, and water flow-paths defined by topogra-
phy, streams, and reservoirs, based on a stream-
reach network with delineated reach catchments. The
model-estimated flux leaving each reach (i) in SPAR-
ROW, F�i , is given by

F�i ¼
X
j2J ið Þ

F0j

0
@

1
AdiT ZS

i ;Z
R
i ; hS; hR

� �

þ
XNS

n¼1
Sn;ianDn ZD

i ; hD
� � !

T0 ZS
i ;Z

R
i ; hS; hR

� �
ðA1Þ

The first summation term represents the flux (F�j )
from all upstream confluent reaches J ið Þ that are
delivered downstream to reach i. di is the fraction of
upstream flux delivered to reach i; di generally equals
1 unless the upstream end of reach i is the location of
a diversion. T �ð Þ is the stream transport function rep-
resenting attenuation processes acting on flux as it
travels along the reach pathway (instream decay).
This function defines the fraction of the flux entering
reach i at the upstream node that is delivered to the
reach’s downstream node. The factor is a function of
measured stream and reservoir characteristics,
denoted by the vectors ZS and ZR, with corresponding
coefficient vectors hS and hR.

The second summation term represents the incre-
mental flux (that is introduced to the stream network
in reach i). This term is composed of the flux originat-
ing from specific sources, indexed by n = 1,…, NS.

Associated with each source is a source variable,
denoted Sn. Depending on the nature of the source,
this variable could represent the mass of the source
available for transport to streams, or it could be the
area of a particular land use. The variable an is a
source-specific coefficient that converts source vari-
able units to flux units. The function Dn �ð Þ represents
the land-to-water delivery factor. For sources associ-
ated with the landscape, this function along with the
source-specific coefficient determines the amount of a
constituent delivered to streams. The land-to-water
delivery factor is a source-specific function of a vector
of delivery variables, denoted by ZD

i , and an associ-
ated vector of coefficients hD. The last term in the
equation, function T 0 �ð Þ, represents the fraction of
flux originating in and delivered to downstream end
of reach i. This term is similar in form to the stream
delivery factor defined in the first summation term
but is used to transport flux only from the midpoint
of the reach to the outlet. A more in-depth description
of the SPARROW model is given in Schwarz et al.
(2006).

Confidence Limits in SPARROW Predictions

The actual delivered flux from SPARROW is
assumed to depend on a multiplicative error term
added to Equation (A1), which represents other
sources and processes not included in the SPARROW
analysis. Because of this residual term, and because
the determination of the predicted flux depends on
coefficients that are estimated via statistical methods,
the estimated delivered yield, and the ranking of that
yield across HUC8s is subject to uncertainty. Due to
the nonlinear manner in which the estimated coeffi-
cients enter the model, it was necessary to use
bootstrap methods to assess the uncertainty in the
yields from SPARROW and the ranking based on the
yields.

Delivered yield for each HUC8 is estimated by
summing the incremental flux component of Equa-
tion (A1) across all reaches within a HUC8
watershed, and then dividing the sum by the area
of the HUC8 watershed. To simplify notation, let b

represent the set of all model coefficients, b ¼ a; hf g,
and let DFi bð Þ denote the incremental flux for reach i,
that is, DFi bð Þ corresponds to the second summation
term and factor T 0 �ð Þ in Equation (A1). �Ti bð Þ is then
defined as the fraction of flux leaving reach i that is
delivered to the Gulf of Mexico and is formed by the
product of the delivery factor for all reaches in the
flow path between reach i and the mouth of the Gulf
of Mexico. The modeled component of delivered yield
for HUC8 watershed u is given by the aggregation of
delivered incremental flux across all reaches in the
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unit, I uð Þ, normalized by the cataloging unit area, Au.
Actual delivered yield, denoted Yu, is composed of
modeled delivered yield and a multiplicative model
error term,

Yu ¼
P

i2I uð Þ Ti bð ÞDFi bð Þ
Au

� exp euð Þ; ðA2Þ

where eu is an independent, identically distributed
error term, assumed to have the same statistical dis-
tribution as the weighted residual from the estimated
SPARROW model. Note that this formulation of the
model error, consistent with the prediction methodol-
ogy used in SPARROW (see Schwarz et al., 2006),
assumes the error term does not accumulate across
reaches, but is simply ‘‘tacked-on’’ to the modeled
component to account for unexplained variation in
flux. The use of a multiplicative error is consistent
with the assumption, and general observation,
that the error process in a SPARROW model is scale-
independent (see Schwarz et al., 2006, for additional
discussion).

Equation (A2), the amount of delivered yield from
a HUC8 watershed, depends on unknown values of
the model coefficients, b, and the error term, eu. The
calibrated SPARROW model provides WNLLS esti-
mates of the coefficients, b̂. Additionally, the
weighted residuals from the model, obtained by com-
paring monitored and predicted flux at the NM moni-
tored reaches [denoted by the set I Mð Þ] and
normalized by the leverage for the observation, hi,
can be used to form a mean estimate of an exponenti-
ated error term,

exp euð Þ
^

¼ 1

NM

X
i2I Mð Þ

exp êi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi= 1� hið Þ

p� �
; ðA3Þ

where êi is the estimated residual for monitored reach
i, and wi is the weight applied to the observation
(only the TN model received non-unitary weights)
(see Alexander et al., 2008 and Schwarz et al., 2006,
for details). The WNLLS estimate of delivered yield is
given by

Ŷu ¼
P

i2I uð Þ Ti b̂
� �

DFi b̂
� �

Au
� exp euð Þ

^
ðA4Þ

The nonlinearity of the Ti �ð Þ and DFi �ð Þ functions
with respect to the estimated coefficients, b̂, causes
the WNLLS estimate of predicted yield given in
Equation (A4) to be biased. A bootstrap procedure,
described in greater detail in Schwarz et al. (2006), is

applied to correct for this bias. The method is imple-
mented by repeated estimation of the SPARROW
model using randomly selected integer weights
(that sum to NM), resulting in R realizations of the
estimated coefficients and estimated mean exponenti-

ated residual, denoted b̂
ðrÞ

and exp euð Þ
^

ðrÞ, r = 1,…, R
(note that the integer weights used to implement the
bootstrap method are not included in the weights, wi,
used to compute the mean exponentiated weighted
residual via the bootstrap iteration-specific computa-
tion of Equation A3 for the TN model). Accordingly,
the rth bootstrap-iteration estimate of delivered yield
is given by

ŶðrÞu ¼

P
i2I uð Þ Ti b̂

ðrÞ
� �

DFi b̂
ðrÞ

� �
Au

� exp euð Þ
^

ðrÞ ðA5Þ

R equals 200 for all bootstrap estimates derived in
the present analysis. The bias-corrected estimate of
delivered yield, denoted Ŷc

u, is obtained using a ratio
formulation of the bootstrap and WNLLS estimates

Ŷc
u ¼

Ŷ2
u

1
R

PR
r¼1 Ŷ

ðrÞ
u

ðA6Þ

The standard error of the bias-corrected estimate
of delivered yield is given by (see Schwarz et al.,
2006, for a derivation)

SE Ŷc
u

� �
¼ Ŷc

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V exp êi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi= 1� hið Þ
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exp euð Þ
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^ þ

V Ŷ
ðrÞ
u

� �
Ŷ2

u

vuuuut ;

ðA7Þ

where V �ð Þ is the standard variance operator,

V xið Þ ¼ 1=Nð Þ
XN

i¼1 xi � 1=Nð Þ
XN

j¼1 xj

� �2
The estimate of the confidence interval for deliv-

ered yield requires explicit consideration of the distri-
bution of the model residuals, rather than just the
statistical properties of the exponential residuals as
was used to derive the bias-corrected and standard
error estimates. The bootstrap method for incorporat-
ing the distribution of the model residuals is to deter-
mine the empirical distribution of the combined
bootstrap-iteration estimate of the modeled compo-
nent of delivered flux and a randomly selected, expo-
nentiated weighted error from the original NM values
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obtained with the WNLLS model estimation (NM

equals 425 for both the TN and TP applications
described in this paper). Let exp ê

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w= 1� hð Þ

p� �ðrÞ
u

denote the rth bootstrap-iteration random selection
from among the NM WNLLS estimates of
exp êi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi= 1� hið Þ

p� �
, i 2 I Mð Þ. As explained in Schwarz

et al. (2006), the R values of

q ¼

P
i2I uð Þ Ti b̂

ðrÞ
� �

DFi b̂
ðrÞ

� �
Au

� exp �ê
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w= 1� hð Þ

p� �ðrÞ
u
;

ðA8Þ
are set in ascending order. Let Pc denote the confi-
dence interval coverage probability (set to 0.9 for this
analysis), let qlo correspond to the R 1� Pcð Þ=2b c þ 1
ranked value, and let qhi represent the
PcRd e þ R 1� Pcð Þ=2b c ranked value ( �b c and �d e repre-

sents the next lowest and next highest integer,
respectively). The resulting 90% confidence interval,
known as an equal-tailed hybrid confidence interval
(Shao and Tu, 1995), is given by

Ŷu

exp euð Þ
^

0
B@

1
CA

2

1

qhi
;
1

qlo

	 

ðA9Þ

SIGNIFICANCE LEVEL AND CONFIDENCE
LIMITS IN RANKINGS OF THE HUC8 BASINS

The assessment of uncertainty in the ranking of
the delivered yields was also based on bootstrap
methods. Unlike the methods used to place confi-
dence limits on specific SPARROW predictions, the
theoretical basis behind the underlying assessment
of uncertainty in ranks was less rigorous. The ad hoc
method used here is based on a bootstrap percentile
approach to estimating a significance level and confi-
dence interval (Shao and Tu, 1995). The bootstrap
method is based on R repetitions of the generated
quantity

zðrÞu ¼

P
i2I uð Þ Ti b̂

ðrÞ
� �

DFi b̂
ðrÞ

� �
Au

� exp ê
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w= 1� hð Þ

p� �ðrÞ
u

ðA10Þ

For each repetition, r, the rank of each estimated
delivered incremental yield (z

ðrÞ
u ) is recorded. The

empirical distribution of these 200 individual ranks

is assumed to be similar to the true distribution of
ranks given the information contained in the
SPARROW model. The model residual component of
z
ðrÞ
u , which represents the bulk of the uncertainty in

the analysis, conforms well with this assumption.
Then on the basis of the 200 different ranks for
each HUC8 watershed from the bootstrapping, it is
possible to determine with what certainty (probabil-
ity) a specific HUC8 would be ranked in or not in
the top specified number of watersheds. For exam-
ple, a specific watershed would be in the top 150
with 90% confidence, if 90% or more of the time
(‡180 times of the 200 repetitions), the watershed
ranked £150.

Additionally, the 90% confidence limits of the rank-
ings for each watershed can be estimated by the 5th
and 95th percentiles of the 200 rankings from the
bootstrapping procedure.

SUPPORTING INFORMATION

Additional Supporting Information may be found
in the online version of this article:

Table S1. Ranking of HUC8 Watersheds in the
Mississippi ⁄ Atchafalaya River Basin on the Basis of
Total Nitrogen Yields, With Confidence Intervals.

Table S2. Ranking of HUC8 Watersheds in the
Mississippi/Atchafalaya River Basin on the Basis of
Total Phosphorus Yields, With Confidence Intervals.

Please note: Neither AWRA nor Wiley-Blackwell is
responsible for the content or functionality of any
supporting materials supplied by the authors. Any
queries (other than missing material) should be direc-
ted to the corresponding author for the article.
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