Figure S1: Cytoplasmic polymorphism with multiple mitochondria per individual and the shape of male and female fitness functions is given by a linear function (additive). The model predicts polymorphism to be slightly less likely in comparison to the haploid model (dashed lines). This is because this model uses a conservative cut-off point of 0.05 to define polymorphism. Parameters: $M = 200$, $\mu = 1 \times 10^{-5}$.
Figure S2: Cytoplasmic polymorphism when multiple mitochondria per individual are present and the shape of male and female fitness functions is given by a sigmoidal function (see Figure 2D). The region in which a cytoplasmic polymorphism occurs is similar relative to the haploid model (dashed lines). The function of the sigmoidal is given by

\[
\begin{align*}
 w_f &= 1 - s_f + s_f \exp \left[-k(M-m)/M\right] / \left\{1 + \exp \left[-k(n=M-m)/M\right]\right\}, \\
 w_m &= 1 - s_m + s_m \exp \left[k(M-m)/M\right] / \left\{1 + \exp \left[k(M-m)/M\right]\right\},
\end{align*}
\]

and \(k = 0.1\). Parameters: \(M = 200\), \(\mu = 1 \times 10^{-5}\), \(B = 200\).
Figure S3: Cytoplasmic polymorphism when the shape of male and female fitness functions is additive and the size of the bottleneck $B = 10$. Although the region of polymorphism is slightly smaller relative to the haploid model, this is due to the conservative demarcation of the region of polymorphism at $p = 0.05$ for the model in which each individual contains multiple cytoplasmic elements. A comparison with relative to Figure S1 (no bottleneck) shows that bottlenecks have little effect when fitness is additive. Parameters: $M = 200$, $\mu = 1 \times 10^{-5}, B = 10$.
Figure S4: Cytoplasmic polymorphism when the shape of male and female fitness functions is given by a scenario of constant dominance (solid lines in Figure 2B,C) and the size of the bottleneck $B = 10$. Outcomes are similar to a scenario without bottlenecks in Figure 4. Parameters: $M = 200$, $\mu = 1 \times 10^{-5}$, $B = 10$.