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Abstract

Extreme precipitation events are likely to become more frequent and more
extreme under a changing climate. It follows that monetary damages from
flooding would also increase relative to baseline, yet this relationship has not
been quantified at the scale of the entire United States. In this paper, we quantify
how climate change could affect monetary damages from flooding in the cot-
erminous United States. With publicly available historical flooding and precipi-
tation data, we estimate region-specific logistic regression models of the
probability that severely damaging floods will occur under baseline conditions.
We then use future precipitation projections driven by climate model outputs to
estimate the probability that damaging floods could occur under a ‘business as
usual’ climate change scenario. Our results project an increase in monetary
damages from flooding in nearly all regions of the United States and a total
increase in damages by the end of century of approximately 30% (assuming no
change in built infrastructure or values). However, these changes vary between
regions due to differences in the mechanisms driving flooding and general
circulation model precipitation projections.

Introduction

A growing body of literature indicates that the frequency of
extreme precipitation events has been increasing in recent
decades (e.g. Karl and Knight, 1998; Groisman et al., 2005;
IPCC, 2012). Climate models and theoretical arguments
further indicate that extreme precipitation events will con-
tinue to increase with rises in greenhouse gas (GHG) con-
centrations (e.g. Palmer and Raisanen, 2002; Trenberth et al.,
2003; Min et al., 2011). Given these empirical and theoretical
arguments for increases in the frequency and severity of
extreme precipitation, it is quite possible that flood risk, and
associated monetary damages from flooding, is also likely to
increase in the 21st century and beyond (e.g. Pielke and
Downton, 2000; Changnon et al., 2001; Milly et al., 2002;
Allamano et al., 2009; Pall et al., 2011). However, quantifying
the monetary damages from increased flooding remains a
vexing problem for a number of reasons. First, physically
based hydrologic models are both costly to implement and
have a limited spatial scale of applicability; estimating
climate change impacts on flood damages at large spatial
scales is simply not practical using physically based hydro-
logic models. And second, monetary damages from flooding

are complicated by socio-economic factors, including flood
management practices, changes in demographics, changes in
land use, and changes in wealth. Thus even if large-scale
floods could be forecast, there remains substantial uncer-
tainty as to how this might translate into changes in mon-
etary damages (e.g. Pielke and Downton, 2000; Choi and
Fisher, 2003). As a result of these complications, national-
scale projections of future flood risk are relatively uncom-
mon (e.g. Hall et al., 2005; Rodda, 2005).

The goal of this study is to develop and test a methodology
for estimating changes in monetary damages from flooding
under a changing climate at the scale of the coterminous
United States (e.g. excluding Alaska and Hawaii). Because
our overall objective was to evaluate potential damages at a
national scale, our approach does not utilise physically based
flood routing models that could be used at local or sub-basin
scales. Instead, our approach is empirically based and relies
on statistical relationships between historical precipitation
and flood damage data for the United States over the past two
decades. Using this approach, we are able to evaluate broad
regional trends, thereby obtaining reasonable national-level
estimates of damages. Changes in precipitation are driven by
an ensemble average of general circulation models (GCMs),
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which are applied as perturbations to the observed time
series of historical precipitation and flooding. While our
approach does not address the role of socio-economic
changes on flood risk, it does overcome the issues associated
with developing formal hydrologic/flood routing models to
translate rainfall into flooding. This approach and its results
are particularly useful for projecting the potential impacts of
climate change, which can inform analyses of the benefits of
avoiding these impacts through GHG mitigation policies.

Methods
Our approach was to formulate statistical relationships
between observed precipitation and flood damages over the
course of the observational record, and to utilise these rela-
tionships to estimate future damages under a changing
climate. Because the atmospheric and hydrologic mecha-
nisms that create damaging floods vary across different
regions of the United States (e.g. O’Connor and Costa,
2004), our analysis of precipitation and flood damage data
was conducted on a regional scale. The data were first evalu-
ated at the scale of the 99 assessment subregions (ASRs) in

the coterminous United States (Figure 1), a set of watersheds
that was defined for the Second National Water Resources
Assessment (U.S. Water Resources Council, 1978). However,
because the data from many of these regions were too sparse
to support our statistical analysis, the paired precipitation
and damage data were bundled into the 18 water resource
regions (WRRs), which are equivalent to two-digit hydro-
logic unit code regions. These regions are small enough that
the mechanisms driving flooding are likely to be similar
across the region, but large enough that the aggregated data
provide a sufficiently robust data set for analysis.

Data sources and data processing

The data on flood damages (the dependent variable) were
obtained from the National Climatic Data Center (NCDC)
(NCDC, 2011b). This data set contains information on spe-
cific flood events occurring over the 1993–2008 period. Note
that the severe flooding events occurring in the Upper Mis-
sissippi Valley during several months of 1993, which were the
largest in the historical record at many locations within this
region (e.g. Parrett et al., 1993), were not included in this
database. For each flood event in the database, the dates of

Figure 1 Two-digit hydrologic unit code (HUC) and assessment subregions boundaries used for spatial bundling of flood and precipita-
tion data.
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occurrence, location (by latitude/longitude, state, county,
and/or municipality), property damages, and crop damages
were recorded, along with other information including (in
many cases) a description of the weather event(s) responsi-
ble. Several types of floods are described and included in this
database, including general flooding, flash flooding, and
coastal flooding. For our analysis, we considered events that
were classified as ‘Flash’, ‘Flood_FlashFlood’, ‘Flooding’, and
‘Floods’. Events that were classified by event types ‘Coastal’
and ‘Unclassified’ were omitted from the final data set.

For the analysis of precipitation controls on flood damage,
all values for property damage, crop damage, and total
damage by flood event were updated to 2007 dollars using
annual consumer price index values compiled from the
Bureau of Labor Statistics (BLS, 2011).

On the basis of location, each damaging flood event was
assigned to 1 of the 99 ASRs in the coterminous United
States (Figure 1). Each entry in the final database includes
the date on which the flood occurred; the ASR in which it
occurred; and the crop damage, property damage, and total
damage in dollars associated with the flood event. ASR
assignments were retained for the purposes of correlating
flood damages with precipitation events within that region.
However, because the number of events in each ASR was
relatively small, the ASR data were aggregated into the larger
watersheds delineated by the 18 WRRs in the United States
to estimate statistical relationships between flood damages
and precipitation across the observational record. The WRR
represents a spatial scale of analysis across which the season-
ality and mechanisms of flooding (e.g. convective versus
frontal storms) are likely to be similar.

The final flood damages database consisted of approxi-
mately 17 000 floods, of which approximately 8000 caused
reported monetary damage. The total damages reported
across all floods in the database were $26.3 billion.

Precipitation data used for analysis were from the global
historical climatology network-daily (GHCN-D) database,
available from NCDC (NCDC, 2011a). This data set comes
from approximately 20 different sources of daily precipitation
data (compiled as precipitation totals by calendar days), and
is quality controlled prior to each update. Using SimCLIM
software (ClimSystems, Hamilton, New Zealand) (Warrick,
2009), the daily precipitation totals from the GHCN-D data-
base were extracted for all climate stations within each ASR,
for the entire period available for each station. Each ASR
typically had between 100–200 meteorological stations, with
record lengths ranging from a few years to over 100 years.

Climate model output for future
precipitation projections

Our analysis relies on a series of temporally correlated pre-
cipitation and flood events (see the Model Development

section). To estimate the potential impact of changing pre-
cipitation on flood damages, the model framework requires
that the temporal patterns of observed precipitation events
are preserved, with a perturbation to the precipitation mag-
nitude on each day. Future precipitation scenarios were
therefore generated using the observed historical data as a
starting point, and perturbing daily precipitation totals by an
amount determined by the GCM output through SimCLIM.

To do this, we generated projected monthly changes in
precipitation at each climate station in the United States and
applied these monthly changes to the observed historical
record. We used a monthly per cent change in precipitation
from baseline (1971–2000) for the year 2100 under a business
as usual (BAU) scenario, in which GHG emissions are pro-
jected to continue on their current trajectory.1 We used a
moderate climate sensitivity of 3 °C (e.g. 3 °C global average
surface warming for a doubling of carbon dioxide). The
results were generated in SimCLIM from an ensemble of
GCMs, which included the following models: BCCRBCM2,
CCSM-30,ECHO-G,GFDLCM20,GFDLCM21,MPIECH-5,
MRI-232A, UKHADCM3, and UKHADGEM (see Randall
et al., 2007 for descriptions of these models). The monthly
precipitation changes projected by this ensemble average
were then applied to the observed daily historical record at
each meteorological station record using scripts developed in
MATLAB®.2

Data analysis

Damage distributions

Over the historic period of analysis, damaging floods in the
United States are unevenly distributed both spatially and
temporally. Monetary damages from flooding are concen-
trated in specific regions, and damages within any given
region are typically unevenly distributed through the year.

Nationally, the distribution of monetary damages from
flooding is heavy-tailed, as illustrated by the nearly log-
normal distribution for all damaging floods throughout the
United States (Figure 2). As an example, the upper 25th per-
centile of flood damages (in terms of dollars) accounts for
approximately 98% of the total damages reported. This
heavy-tailed distribution of flood damage data was found to
be well approximated by a generalised extreme value fit to
the log-transformed damages for all WRRs. As described

1Under the BAU scenario, US GHG emissions are benchmarked to the US

Energy Information Administration’s Annual Energy Outlook 2010 forecast,

which reflects the Energy Independence and Security Act of 2007 and the

American Recovery and Reinvestment Act of 2009. International emissions

projections under this scenario are based on the Energy Modeling Forum-22

baseline (see Calvin et al., 2009).
2MATLAB is a registered trademark of The Mathworks, Inc (Natick, MA,

USA).
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later, the observation that nearly all of the damages can be
accounted for by the uppermost 25% of individual floods
also allowed us to focus our logistic regression model on
explaining the upper 25th percentile of damaging floods (see
the Model Development section).

Monetary damages from historical flooding are also
unevenly distributed spatially across the coterminous United
States. Flood damages are highest along the eastern seaboard
(WRRs 2 and 3), with slightly lower contributions in the
Midwest and California (WRRs 5, 7, 10, and 18). Figure 3
illustrates the spatial distribution of historical flood damages
over the historical record.

Finally, monetary damages from flooding are also
unequally distributed in time, and this intra-annual timing
of damage from flooding varies regionally (Figure 4). For
example, flood damages in the South Atlantic Gulf (WRR 3)
are dominated by spring and fall events. Damages in the
Missouri River basin (WRR 10) are concentrated in the
summer months, which most likely correspond to convective
summertime storms. Damages in California (WRR 18) are
dominated by wintertime events, related to Pacific storms

Figure 2 National distribution of monetary damages from flood-
ing in log-bins. Red line is generalised extreme value fit to the
log-transformed data.

Figure 3 Spatial distribution of monetary damages from flooding, 1993–2008.
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that penetrate into this region during the winter. This sea-
sonality also played a role in the development of our logistic
regression model, as described in the Model Development
section.

Climate model output

GCM results predict an uneven distribution of precipitation
changes, both spatially and temporally. Figure 5 shows sea-
sonal average changes in monthly precipitation estimated by
our ensemble of models for the year 2100, assuming a BAU
scenario with moderate (3 °C) sensitivity.

As illustrated in Figure 5, the most pronounced changes in
modelled monthly precipitation are decreases in the north-
west and increases in the south-west during the summer.
Moderate increases in the north-eastern half of the country
and decreases in the south-western half of the country are
forecast for the winter and spring months. In our regression
model, these seasonal changes in forecast precipitation inter-
act with the seasonal distribution of damaging flooding to
drive changes in the magnitude of flood damages in the
future.

Model development

Modelling flood probabilities

A statistical model estimating the relationship between pre-
cipitation and the precise level of monetary damages would
require that both the precipitation and monetary data be
collected consistently and very accurately over time and in all
areas of the country. While the precipitation data methods
are standardised and have a formal quality control process,
the monetary data collection methods do not. These data are
self-reported; therefore their accuracy may vary over time
and between locations.

To account for possible inconsistencies in data collection
methods while still taking advantage of the information
regarding the general magnitude of flooding damages, we
used a logistic regression model to estimate the probability
of a large, damaging flood occurring given a suite of ante-
cedent precipitation conditions. We identified floods that fell
into the uppermost 25th percentile of monetary damages for
floods in each WRR and labelled these as ‘damaging floods’.
Thus the model estimates when damaging floods are likely to
occur given a set of precipitation conditions, but it does not
estimate the exact magnitude of monetary damages.

The variables used to simulate the occurrence of damag-
ing floods capture the total amount, average amount, and
seasonality of precipitation within the WRR. These variables
were all calculated from the GHCN-D record for each ASR
separately, creating a data set with a single record for each
ASR and each day in the study period. The ASR values were
then bundled to calculate a separate set of variables for each
WRR. The variables include:
• Median precipitation across an ASR on each day
• Total 1-day precipitation in the ASR, measured as the sum

of precipitation at all stations on that day
• Total 3-day precipitation in the ASR, measured as the sum

of precipitation at all stations on the previous three days
• Total 5-day precipitation in the ASR, measured as the sum

of precipitation at all stations on the previous five days
• Total 7-day precipitation in the ASR, measured as the sum

of precipitation at all stations on the previous seven days
• The season.
The logit model specification is as follows:
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where D represents the monetary damages of an individual
precipitation event, j indexes an individual precipitation

Figure 4 Seasonality of flood damages in three water resource regions (WRRs), over the period of record from 1993–2008. Dollar
amounts increase radially; seasons are illustrated around the circle.
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event, t indexes time, and k indexes all flooding events that
occurred within the WRR on that day. The earlier expression
translates to ‘the probability that the monetary damages
from an individual precipitation event exceed the 75th per-
centile in damages, conditional on the explanatory variables
in X’. b6 is a vector including coefficients for individual
dummies for winter, spring, and summer (fall is omitted to
avoid perfect collinearity).

Precipitation projections

Once the parameters of the logistic regression model were
determined based on historical data, the baseline precipita-
tion data set was perturbed by an amount defined by the
GCM output. Because our method relies on correlations
between an observed time series of precipitation and damage
values, this time series must be preserved in the perturbed

case. As a result, we applied average monthly deltas to this
observed time series to make our projections.

Calculating monetary damages

For each WRR, the output of the perturbed logistic regres-
sion model is a projection of the change in the probability of
a 75th percentile damaging flood event under climate
change, along with the uncertainty bounds around this pre-
diction. However, the regression model does not include
projections about the monetary damages incurred by any
particular flood or suite of floods. To translate the change in
flood probability into a change in the estimated monetary
damages from flooding, we used a Monte Carlo approach.

The Monte Carlo approach applies the estimated prob-
ability of flooding over a 100-year period. Each time a flood
occurs, the simulation picks randomly from the uppermost

Figure 5 Per cent change in seasonal precipitation for business as usual scenario, assuming 3 °C sensitivity for the year 2100.
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25th percentile of the empirical distribution of flood damage
values for that WRR. Flood damages are aggregated over the
100-year period, and the average annual damage is calcu-
lated for each WRR at the end of the model run. This is
repeated 1000 times so that the final simulation output is an
average of 1000 hundred-year simulations.

Results

Parameter estimates

Results from the 18 separate WRR logistic regression models
are included in Table 1. Within each row in Table 1, the top
number is the coefficient and the bottom number is the
t-statistic, calculated to test the probability that the coeffi-
cient has an effect on the dependent variable (i.e. the coeffi-
cient is not equal to zero). The most important variables
affecting the probability of a damaging flood, both in terms
of statistical significance and magnitude, are the season in
which the precipitation occurs and the total precipitation
within a WRR on a given day.

In 13 of 18 WRRs, damaging floods are much more likely
to occur in summer than in any other season. Springtime
floods in New England, the South Atlantic Gulf, the Upper
and Lower Mississippi, Missouri, Arkansas-White-Red, and
Texas-Gulf are also more likely to be damaging. Given the
relatively large spatial scale and simple measures of precipi-
tation, these seasonal indicators bundle a number of
complex hydrologic processes that are not captured explic-
itly in these models.

Across all but two WRRs (the Pacific Northwest and Cali-
fornia), greater total precipitation across the ASR is signifi-
cantly more likely to result in a damaging flood. This is
apparent in both the magnitude and statistical significance
of the coefficients, with the strongest effects in the Great
Basin, the Upper Colorado River, and the Lower Colorado
River.

In the Pacific Northwest and California, damaging floods
are also more likely to occur when the median precipitation
across the ASR is greater. In other words, damaging floods are
more likely when many stations experience a large amount of
rain, rather than when single stations experience dramati-
cally greater rainfall than other stations within the ASR. This
suggests that large-scale weather systems are driving flood
damages in these regions, rather than localised storms. In the
South Atlantic Gulf, the Great Lakes, the Ohio River, the
Lower Mississippi, the Souris Red Rainy, the Missouri and
Arkansas, Texas-Gulf, Upper and Lower Colorado, and the
Great Basin, greater median precipitation within the ASR
actually lowers the probability of a damaging flood. In each
of these cases, the coefficient on total precipitation is also
significant and positive, indicating that the greatest increases
(decreases) in the probability of damage occur when the total

and median precipitation diverge (converge). This indicates
that flooding in these areas is most severe when precipitation
is extreme and localised. Climate change would have a dra-
matic effect in these areas if total rainfall increased, but this
rainfall was isolated in a few particular ASRs. Median pre-
cipitation has no significant effect on the probability of a
damaging flood in New England, the Mid-Atlantic, Tennes-
see, the Upper Mississippi, or the Rio Grande.

In many cases, cumulative rainfall over 3-, 5-, and 7-day
periods has little effect on the probability of a damaging
flood occurring. This indicates that single-day rainfall-run-
off is the primary control on damaging flooding in many
cases. Longer-term rainfall accumulation increases the prob-
ability of damaging floods in the Lower Mississippi, Mis-
souri, Arkansas-White-Red, Texas-Gulf, and the Rio Grande.
These areas could experience more frequent damaging
floods if rainfall events under climate change were more
closely spaced, or if rainfall occurred during longer duration
storm events.

The Upper Mississippi, Lower Colorado, and the Great
Basin had few damaging floods, limiting the variables that
could be included in their respective models.

Probability of damaging flooding

Table 2 shows the current and predicted future probabilities
of a damaging flood occurring, the standard errors of these
estimates (calculated using the Delta method), and results of
t-tests of the statistical significance of the difference between
the predicted probabilities.

The logistic regression models estimate that damaging
floods will occur more frequently in 14 of the 18 WRRs
(Figure 6). These differences are statistically significant in
four regions: the Great Lakes, the Ohio River, Texas-Gulf,
and Lower Colorado (Figure 7a). In the other 10 regions,
while the models do project that damaging floods will be
more common in the future, it is possible that flooding
occurrence could remain constant, or in some cases decrease,
in the future (Figure 7b). Note that although increases in
flood damages are not significant in any of these regions,
increases in flood damages are more likely in some of these
10 regions than in others. In New England, as well as in the
upper Mississippi River Valley and the Rio Grande, the dis-
tributions of current and future flood damage probabilities
are not statistically different at an 80% confidence level
(Figure 7c). The models predict that damaging floods will
occur less frequently in the Pacific Northwest and California.
However, California is the only region where this difference
is statistically significant (Figure 7d).

In the Texas-Gulf region, precipitation is projected to
decrease, yet the frequency of damaging floods is estimated
to increase. This occurs because in the Texas-Gulf region,
damages are caused more by localised flooding than by total
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Table 1 Logistic regression model results, by WRR

New
England Mid-Atlantic

South
Atlantic Gulf

Great
Lakes Ohio Tennessee

Upper
MS

Lower
MS

Souris
Red Rainy

WRR 1 2 3 4 5 6 7 8 9
Totalprecip 0.136 0.136 0.293 1.006 0.609 0.772 0.214 0.767 2.154

0.8 4.05*** 5.80*** 4.66*** 10.46*** 2.47** 2.00** 4.33*** 3.08***
Medianprecip 0.013 0.008 -0.009 -0.025 -0.058 0.012 0.003 -0.04 -0.569

1.45 1.2 2.41** 2.01** 7.02*** 0.56 0.19 2.21** 1.91*
Tot3day 0.101 -0.023 0.002 0.05 -0.028 -0.205 -0.02 -0.114

1.45 1.66* 0.1 0.76 1.61 1.79* 0.46 2.02**
Tot5day 0.009 0.014 0.004 -0.027 0.014 0.127 0.019 0.154

0.13 1.09 0.25 0.41 0.87 1.15 0.42 2.53**
Tot7day 0 0.004 0.015 0.032 0.021 0.137 0.013 -0.035

0 0.4 1.21 0.65 1.67* 1.5 0.41 0.72
Spring 2.086 0.165 0.99 0.506 0.205 -0.308 1.881 1.049 12.523

3.29*** 0.47 3.49*** 1.47 0.89 0.85 2.50** 2.72*** 0
Summer 1.828 1.607 1.735 1.011 0.506 -0.45 2.982 0.431 14.155

2.72*** 4.98*** 6.30*** 2.91*** 2.16** 1.01 4.01*** 0.93 0
Fall 0.649 0.413 1.335 -0.746 -0.785 -0.597 0.96 0.392 11.855

0.9 1.2 4.77*** 1.68* 2.57** 1.35 1.19 0.89 0
Constant -7.69 -6.44 -6.005 -5.943 -5.413 -6.365 -6.956 -6.671 -19.594

11.04*** 16.61*** 19.90*** 17.21*** 22.06*** 15.62*** 9.73*** 15.10*** 0
N 5840 5840 5840 5840 5840 5840 5840 5840 5840
Pseudo R2 0.2 0.23 0.15 0.16 0.19 0.21 0.14 0.14 0.15
Chi Squared 103.51 255.28 280.07 185.46 357.37 120.56 129.34 95.35 35.4
P-value 0 0 0 0 0 0 0 0 0

Missouri
Arkansas-
White-Red Texas-Gulf

Rio
Grande

Upper
Colorado

Lower
Colorado

Great
Basin

Pacific
Northwest California

WRR 10 11 12 13 14 15 16 17 18
Totalprecip 0.2 0.388 0.436 2.181 4.725 3.265 8.018 -0.319 -0.044

4.52*** 9.82*** 11.57*** 3.03*** 3.08*** 6.20*** 3.89*** 0.93 0.23
Medianprecip -0.02 -0.042 -0.067 -0.023 -0.37 -0.204 -1.51 0.096 0.039

1.91* 5.26*** 7.98*** 0.74 1.99** 4.18*** 2.69*** 2.24** 2.61***
Tot3day -0.017 -0.02 -0.009 0.44 0.028 0.231 -0.724 0.071 0.013

1.04 1.11 0.52 1.32 0.04 0.91 0.81 0.56 0.19
Tot5day 0.029 -0.006 -0.011 -0.531 -0.692 -0.139 0.856 0.08 0.03

1.69* 0.37 0.7 1.62 1.09 0.53 0.78 0.58 0.49
Tot7day -0.01 0.025 0.031 0.403 0.534 0.141 -0.424 -0.103 0.025

0.76 2.05** 2.74*** 1.94* 1.33 0.84 0.49 1.06 0.6
Spring 2.709 1.026 1.523 14.79 -0.063 0.715 -0.368

3.71*** 2.81*** 4.27*** 0.01 0.04 0.8 0.62
Summer 2.952 1.487 1.956 15.676 2.514 2.489 16.526 2.237 1.31

4.03*** 4.03*** 5.51*** 0.01 2.40** 4.98*** 0.01 2.65*** 2.12**
Fall 0.67 0.815 0.99 14.088 -0.26 2.034 13.805 0.931 0.418

0.82 2.15** 2.65*** 0.01 0.18 4.05*** 0.01 1.19 0.74
Constant -6.936 -6.258 -6.58 -20.199 -8.601 -7.416 -23.074 -7.053 -6.58

9.76*** 17.30*** 18.22*** 0.02 7.79*** 13.61*** 0.01 8.04*** 12.56***
N 5840 5840 5840 5840 5840 4368 4368 5840 5840
Pseudo R2 0.17 0.21 0.24 0.19 0.2 0.2 0.27 0.09 0.21
Chi Squared 227.62 302.45 392.54 170.42 47.63 151.78 37.67 26.88 100.49
P-value 0 0 0 0 0 0 0 0 0

One asterisk beside the t-statistic indicates that there is less than a 10% chance that the coefficient is equal to zero;

two asterisks indicate that there is less than a 5% chance that the coefficient is equal to zero;

three asterisks indicate that there is less than a 1% chance that the coefficient is equal to zero.

MS, Mississippi; WRR, water resource region.
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Table 2 Current and future probability of damaging floods occurring

WRR Region

Current Future Change
from
current t-statistic

Probability that
current and future
distributions are equalMean Standard error Mean Standard error

1 New England 0.7% 0.0011 0.7% 0.0016 94.8% -0.19 0.85
2 Mid-Atlantic 1.9% 0.0017 2.0% 0.0030 106.1% 0.34 0.73
3 South Atlantic Gulf 3.8% 0.0024 4.5% 0.0038 118.4% 1.55 0.12
4 Great Lakes 2.0% 0.0018 2.9% 0.0041 146.2% 2.03 0.04
5 Ohio 3.7% 0.0023 6.7% 0.0053 182.0% 5.22 0.00
6 Tennessee 0.9% 0.0012 1.0% 0.0016 113.2% 0.58 0.56
7 Upper MS 1.6% 0.0016 1.6% 0.0018 101.3% 0.09 0.93
8 Lower MS 1.0% 0.0013 1.3% 0.0021 123.6% 0.99 0.32
9 Souris Red Rainy 0.3% 0.0007 0.4% 0.0011 133.8% 0.75 0.45

10 Missouri 2.5% 0.0020 2.7% 0.0026 110.4% 0.80 0.43
11 Arkansas-White-Red 2.7% 0.0020 3.1% 0.0026 113.9% 1.15 0.25
12 Texas-Gulf 3.2% 0.0022 3.9% 0.0028 122.4% 2.03 0.04
13 Rio Grande 1.5% 0.0015 1.4% 0.0018 96.6% -0.21 0.83
14 Upper Colorado 0.3% 0.0007 0.6% 0.0024 194.1% 1.18 0.24
15 Lower Colorado 1.7% 0.0019 3.6% 0.0047 210.1% 3.68 0.00
16 Great Basin 0.2% 0.0007 0.5% 0.0018 214.8% 1.39 0.17
17 Pacific Northwest 0.4% 0.0008 0.3% 0.0007 76.0% -0.86 0.39
18 California 0.7% 0.0010 0.4% 0.0009 60.0% -2.01 0.04

Regions in bold type had statistically significant changes in flood damages under climate change at a 95% confidence level.

MS, Mississippi; WRR, water resource region.

Figure 6 Spatial distribution of changes in damaging flood frequency.
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precipitation across the region. In this region, the GCMs
estimate that total precipitation decreases slightly (by 7.5%),
but median precipitation decreases by 50%. These projec-
tions indicate that precipitation events could become more
localised and therefore more damaging. To be sure, GCMs
are simulating precipitation over grid boxes that are more
than a hundred miles across and thus are not capturing
localised changes in precipitation. This result should be
interpreted with caution and could be further investigated
using downscaled projections of changes in precipitation.

Monetary changes in flood damages

Table 3 summarises current flood occurrence, mean
damages per flood, current average annual damages, future
mean and 95% confidence intervals for damages, and the

mean and 95% confidence intervals for projected changes in
annual damages. These calculations assume that the mean
monetary damages per flood remain constant in the future.

For the four WRRs with statistically significant changes in
the frequency of damaging floods, the mean and lower and
upper 95% confidence intervals for monetary damages are
all above zero. Summing damages across all WRRs, we esti-
mate that the mean additional annual monetary damages in
the future will be $747 million per year (a 31% increase from
current levels), ranging from $3 million less damages to $1.5
billion more damages (undiscounted). The analysis assumes
no change in the built environment or value of affected
buildings and property.

Figure 8 displays the current and projected future distri-
butions of monetary damages by WRR based on the Monte
Carlo model output. While the mean increase in monetary

(a) (b)

(c) (d)

Figure 7 Examples of modelled current and future probabilities of damaging floods. Statistically significant increase in damaging floods
for water resource region (WRR) 5 (a); modelled increase in flood probability, but not statistically significant for WRR 3 (b); statistically
indistinguishable change in flood probability for WRR 1 (c); and statistically significant decrease in flood probability WRR 18 (d).

226 Wobus et al.

© 2013 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd J Flood Risk Management 7 (2014) 217–229



damages is high in regions such as the Mid-Atlantic, the
South Atlantic Gulf, and the Upper Colorado River, the vari-
ance around these means is often large, illustrating the
uncertainty in this outcome.

Discussion
This study developed and tested a framework for estimating
changes in the monetary damages due to flooding under a

changing climate. This framework can be applied to estimate
flooding damages under a broader range of future GHG
emission and climate scenarios, and this is a focus of future
work. Due to the large spatial scale of this analysis, physically
based hydrologic models were not used to make these pro-
jections; instead, our approach combines GCM output with
an evaluation of the statistical correlations between local and
regional rainfall and flood damages. While this approach
provides a national-scale method of estimating how mon-

Table 3 Current and projected future annual damages from flooding

WRR Region
Damaging
floods/year

Mean
damages/event

Current annual
damages

Future

Mean Lower 95% CI Upper 95% CI

1 New England 5.375 $8 190 581 $44 024 373 $41 744 591 $22 481 807 $61 007 376
2 Mid-Atlantic 13.88 $32 491 140 $450 814 568 $478 334 468 $340 774 130 $615 894 806
3 South Atlantic Gulf 27.75 $11 921 720 $330 827 730 $391 566 262 $326 456 053 $456 676 472
4 Great Lakes 14.38 $6 494 201 $93 354 139 $136 496 967 $98 142 314 $174 851 621
5 Ohio 26.88 $7 626 838 $204 971 271 $373 063 150 $315 240 650 $430 885 650
6 Tennessee 6.38 $17 466 130 $111 346 579 $126 082 066 $85 840 816 $166 323 316
7 Upper MS 11.63 $6 189 748 $71 955 821 $72 882 568 $57 022 547 $88 742 589
8 Lower MS 7.5 $4 703 467 $35 276 003 $43 595 828 $29 664 697 $57 526 959
9 Souris Red Rainy 2.125 $1 419 412 $3 016 251 $4 034 534 $1 804 568 $6 264 499

10 Missouri 18 $6 073 650 $109 325 700 $120 728 724 $98 500 894 $142 956 553
11 Arkansas-White-Red 20 $3 639 200 $72 784 000 $82 869 258 $69 247 988 $96 490 529
12 Texas-Gulf 23.5 $17 242 620 $405 201 570 $495 892 600 $426 528 590 $565 256 609
13 Rio Grande 10.625 $2 971 435 $31 571 497 $30 505 861 $22 928 596 $38 083 127
14 Upper Colorado 2.25 $11 879 560 $26 729 010 $51 886 638 $11 740 923 $92 032 354
15 Lower Colorado 9.25 $31 716 510 $293 377 718 $616 320 426 $456 818 666 $775 822 186
16 Great Basin 1.25 $8 528 340 $10 660 425 $22 898 541 $6 874 007 $38 923 075
17 Pacific Northwest 2.75 $4 272 614 $11 749 689 $8 931 319 $4 696 113 $13 166 525
18 California 4.875 $22 235 440 $108 397 770 $65 028 306 $37 781 433 $92 275 179

Total 208.38 $205 062 606 $2 415 384 111 $3 162 862 108 $2 412 544 792 $3 913 179 424

MS, Mississippi; WRR, water resource region; CI, confidence interval.

WRR Region

Change

Mean Lower 95% CI Upper 95% CI

1 New England -$2 279 781 -$21 542 565 $16 983 003
2 Mid-Atlantic $27 519 900 -$110 040 437 $165 080 238
3 South Atlantic Gulf $60 738 532 -$4 371 677 $125 848 742
4 Great Lakes $43 142 828 $4 788 175 $81 497 481
5 Ohio $168 091 879 $110 269 379 $225 914 379
6 Tennessee $14 735 487 -$25 505 763 $54 976 737
7 Upper MS $926 747 -$14 933 274 $16 786 769
8 Lower MS $8 319 825 -$5 611 306 $22 250 956
9 Souris Red Rainy $1 018 283 -$1 211 682 $3 248 248

10 Missouri $11 403 024 -$10 824 806 $33 630 853
11 Arkansas-White-Red $10 085 258 -$3 536 012 $23 706 529
12 Texas-Gulf $90 691 030 $21 327 020 $160 055 039
13 Rio Grande -$1 065 635 -$8 642 901 $6 511 630
14 Upper Colorado $25 157 628 -$14 988 087 $65 303 344
15 Lower Colorado $322 942 708 $163 440 949 $482 444 468
16 Great Basin $12 238 116 -$3 786 418 $28 262 650
17 Pacific Northwest -$2 818 369 -$7 053 576 $1 416 837
18 California -$43 369 464 -$70 616 337 -$16 122 591

Grand total $747 477 997 -$2 839 319 $1 497 795 313

MS, Mississippi; WRR, water resource region; CI, confidence interval.
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etary damages from flooding might change under a chang-
ing climate, it also introduces some key limitations that are
described here.

First, because our model relies on statistical correlations
between precipitation and flooding, it requires that we pre-
serve an observed time series of precipitation and flooding
events. As a result, GCM-derived changes in precipitation are
incorporated as monthly changes to an observed time series,
rather than as changes in the distribution of storm frequency
and magnitude. This introduces a potential limitation to this
modelling framework: many studies suggest that changes in
the frequency-magnitude distribution of storms may occur
under climate change, and in particular that extremes
may become more extreme (e.g. Meehl et al., 2000; Emori
and Brown, 2005; Tebaldi et al., 2006; IPCC, 2012). Our
approach to applying an average monthly delta to an
observed time series may therefore underestimate the effect
of potential increases in the severity of storms, particularly
in regions where isolated, convective events drive flooding.

In addition, because the logistic regression model consid-
ers only 1-, 3-, 5-, and 7-day precipitation totals, there is
very little hydrologic ‘memory’ in our approach. The
model therefore will not capture potential changes in flood
damages due to snowmelt events or rain-on-snow events.
Analysis of the seasonality of flood damages indicates that
this could be a shortcoming in regions such as New England,
the Mid-Atlantic, the Ohio River, Upper Mississippi, and
Souris Red Rainy basins (WRRs 1, 2, 5, 7, and 9). In each of
these WRRs, flood damages in the spring represent a signifi-
cant fraction of total damages, and snowmelt is a potential
source of these damaging events.

Finally, our approach to estimating damages assumes sta-
tionarity in the distribution of monetary damages from
flooding in the future. In reality, this distribution is likely to

change: changes in demographics, modifications to flood
protection infrastructure, or changes in wealth could all
influence the damage incurred by a given magnitude of flood
event in the future (e.g. Pielke and Downton, 2000; Bouwer,
2011). However, these future demographic and infrastruc-
ture changes could either increase or decrease damages from
flooding in the future: flood protection could decrease
damages, while increases in overall wealth or additional
development in the floodplain could increase them. Without
an a priori means of evaluating which path to follow, the
assumption of stationarity in this distribution was deemed
appropriate.

Conclusions

The results of our analysis indicate that monetary damages
from flooding will increase in 14 of the 18 WRRs in the
United States under a BAU scenario, with statistically signifi-
cant increases in damages in four of these regions: the Great
Lakes, the Ohio River, the Texas-Gulf region, and the Lower
Colorado. The mechanisms behind these forecast changes
vary regionally. For example, increases in flood damages in
the Lower Colorado are due to substantial increases in pro-
jected summertime precipitation, when most of the flood
damages in this region occur. In the Great Lakes and Ohio
River, increases in damages may be driven by increases in fall,
winter, and spring precipitation.

Nationally, the model estimates that the annual monetary
damages from flooding may increase by up to $1.5 billion by
2100, with a mean estimate of approximately $750 million or
31% higher than the historic baseline. Nearly all of the pro-
jections within the 95% confidence limits are positive, indi-
cating that it is unlikely that monetary damages from
flooding will decrease in the future.
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