Appendix S1. Literature search flowchart and results


176 Articles identified*

103 Articles excluded based on review of title and abstract (if in no n-English or focused on populations with disease)

73 Articles underwent full article review

41 Articles excluded (reasons as follow):
- 9 Were review articles, did not use primary data
- 5 Focused on a special occupational group (e.g., veterans)
- 2 Report combined heritability estimates
- 2 Study sample was less than 30 subjects
- 6 Did not have information on the heritability of anthropometrics
- 17 Did not have information on the heritability of BMI

32 Relevant articles identified (n):
Various populations were represented, including the US (3), the UK (6), Finland (7), Netherlands (2), Denmark (3), Sweden (2), China (3), South Korea (2), German (1), Poland (1), Belgium (1), and Norway (1).

Appendix S2. Bubble plot of BMI-heritability against age using the LOWESS method, based on overall heritability estimates from all 32 twin studies

The effect of age on body mass index (BMI)-heritability is described by this bubble plot using the locally weighted scatter plot smoothing (LOWESS) method for regression to create a non-parametric smoothing curve. The size of the circles reflects the weight of the study (where the weighting factor was equivalent to study sample size). The curve increased until around age 20 ($\beta = 1.55$, standard error [SE] = 0.39, $P < 0.001$) and peaked in early adulthood (age 20). BMI-heritability at age 20 was 79%. Then, the heritability curve decreased steadily until the mid-50s ($\beta = -0.47$, SE = 0.16, $P < 0.01$; BMI-heritability at age 55 was 66%), and then gradually increased afterwards, though not significantly so ($\beta = 0.15$, SE = 0.57, $P = 0.80$).