Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference
Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide
Miranda Whitten
Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
Search for more papers by this authorCorresponding Author
Paul Dyson
Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
Corresponding author:
Paul Dyson
E-mail: [email protected]
Search for more papers by this authorMiranda Whitten
Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
Search for more papers by this authorCorresponding Author
Paul Dyson
Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
Corresponding author:
Paul Dyson
E-mail: [email protected]
Search for more papers by this authorAbstract
Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects.
References
- 1 Parham PE, Waldock J, Christophides GK, Michael E. 2015. Climate change and vector-borne diseases of humans. Philos Trans R Soc Lond B Biol Sci 370: 1665.
- 2 Oerke EC. 2006. Crop losses to pests. J Agr Sci 144: 31–43.
- 3i5 K Consortium. 2013. The i5 K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered 104: 595–600.
- 4 Adams MD, Celniker SE, Holt RA, Evans CA, et al. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185–95.
- 5 Holt RA, Subramanian GM, Halpern A, Sutton GG, et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–49.
- 6 Mita K, Kasahara M, Sasaki S, Nagayasu Y, et al. 2004. The genome sequence of silkworm, Bombyx mori. DNA Res 11: 27–35.
- 7 Sijen T, Fleenor J, Simmer F, Thijssen KL, et al. 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107: 465–76.
- 8 Provost P, Silverstein RA, Dishart D, Walfridsson J, et al. 2002. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc Natl Acad Sci USA 99: 16648–53.
- 9 Wilson RC, Doudna JA. 2013. Molecular mechanisms of RNA interference. Annu Rev Biophys 42: 217–39.
- 10 Williams RW, Rubin GM. 2002. Argonaute1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci USA 99: 6889–94.
- 11 Caudy AA, Ketting RF, Hammond SM, Denli AM, et al. 2003. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425: 411–4.
- 12 Kalidas S, Smith DP. 2002. Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33: 177–84.
- 13 Kamath RS, Ahringer J. 2003. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30: 313–21.
- 14 Timmons L, Court DL, Fire A. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263: 103–12.
- 15 McEwan DL, Weisman AS, Hunter CP. 2012. Uptake of extracellular double-stranded RNA by SID-2. Mol Cell 47: 746–54.
- 16 Hinas A, Wright AJ, Hunter CP. 2012. SID-5 is an endosome-associated protein required for efficient systemic RNAi in C. elegans. Curr Biol 22: 1938–43.
- 17 Winston WM, Sutherlin M, Wright AJ, Feinberg EH, et al. 2007. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci USA 104: 10565–70.
- 18 Li W, Koutmou KS, Leahy DJ, Li M. 2015. Systemic RNA interference deficiency-1 (SID-1) extracellular domain selectively binds Long double-stranded RNA and is required for RNA transport by SID-1. J Biol Chem 290: 18904–13.
- 19 Kennerdell JR, Carthew RW. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95: 1017–26.
- 20 Misquitta L, Paterson BM. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci USA 96: 1451–6.
- 21 Lam G, Thummel CS. 2000. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr Biol 10: 957–63.
- 22 Valdes VJ, Athie A, Salinas LS, Navarro RE, et al. 2012. CUP-1 is a novel protein involved in dietary cholesterol uptake in Caenorhabditis elegans. PLoS ONE 7: e33962.
- 23 Ulvila J, Parikka M, Kleino A, Sormunen R, et al. 2006. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281: 14370–5.
- 24 Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, et al. 2008. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9: R10.
- 25 Wynant N, Santos D, Van Wielendaele P, Vanden Broeck J. 2014. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol Biol 23: 320–9.
- 26 Luo Y, Wang X, Yu D, Kang L. 2012. The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biol 9: 663–71.
- 27 Wynant N, Duressa TF, Santos D, Van Duppen J, et al. 2014. Lipophorins can adhere to dsRNA, bacteria and fungi present in the hemolymph of the desert locust: a role as general scavenger for pathogens in the open body cavity. J Insect Physiol 64: 7–13.
- 28 Krieger M, Herz J. 1994. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 63: 601–37.
- 29 Miyata K, Ramaseshadri P, Zhang Y, Segers G, et al. 2014. Establishing an in vivo assay system to identify components involved in environmental RNA interference in the western corn rootworm. PLoS ONE 9: e101661.
- 30 Cappelle K, de Oliveira CF, Van Eynde B, Christiaens O, et al. 2016. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol Biol 25: 315–23.
- 31 Aronstein K, Pankiw T, Saldivar E. 2006. SID-I is implicated in systemic gene silencing in the honey bee. J Apicult Res 45: 20–4.
- 32 Xu HJ, Chen T, Ma XF, Xue J, et al. 2013. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: delphacidae). Insect Mol Biol 22: 635–47.
- 33 Xiao D, Gao XW, Xu JP, Liang X, et al. 2015. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle. Insect Biochem Molec 60: 68–77.
- 34 Li XX, Dong XL, Zou C, Zhang HY. 2015. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference. Sci Rep 5: 8700.
- 35 Huvenne H, Smagghe G. 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56: 227–35.
- 36 Li H, Khajuria C, Rangasamy M, Gandra P, et al. 2015. Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults. J Appl Entomol 139: 432–45.
- 37 Shukla JN, Kalsi M, Sethi A, Narva KE, et al. 2016. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol 13: 656–69.
- 38 Wynant N, Santos D, Verdonck R, Spit J, et al. 2014. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 46: 1–8.
- 39 Ren D, Cai Z, Song J, Wu Z, et al. 2014. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. Insect Mol Biol 23: 175–84.
- 40 Garbutt JS, Belles X, Richards EH, Reynolds SE. 2013. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. J Insect Physiol 59: 171–8.
- 41 Belles X. 2010. Beyond Drosophila: RNAi In Vivo and Functional Genomics in Insects. Annu Rev Entomol 55: 111–28.
- 42 Katoch R, Sethi A, Thakur N, Murdock LL. 2013. RNAi for Insect Control: current perspective and future challenges. Appl Biochem Biotech 171: 847–73.
- 43 Whitten MMA, Sun F, Tew IF, Schaub G, et al. 2007. Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T-cruzi and bacterial cell wall components. Insect Biochem Molec 37: 440–52.
- 44 Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, et al. 2007. Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7.
- 45 Wuriyanghan H, Rosa C, Falk BW. 2011. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PLoS ONE 6: e27736.
- 46 Ghanim M, Kontsedalov S, Czosnek H. 2007. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Molec 37: 732–8.
- 47 Whyard S, Singh AD, Wong S. 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Molec 39: 824–32.
- 48 Baum JA, Bogaert T, Clinton W, Heck GR, et al. 2007. Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25: 1322–6.
- 49 Pitino M, Coleman AD, Maffei ME, Ridout CJ, et al. 2011. Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6: e25709.
- 50 Zha WJ, Peng XX, Chen RZ, Du B, et al. 2011. Knockdown of midgut Genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS ONE 6: e20504.
- 51 Tian HG, Peng H, Yao Q, Chen HX, et al. 2009. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 4: e6225.
- 52 Zhou XG, Wheeler MM, Oi FM, Scharf ME. 2008. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Molec 38: 805–15.
- 53 Wu S, Zhang XF, He YQ, Shuai JB, et al. 2010. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development. Dev Comp Immunol 34: 1191–8.
- 54 Vieira CS, Waniek PJ, Mattos DP, Castro DP, et al. 2014. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasite Vector 7: 232.
- 55 Khajuria C, Velez AM, Rangasamy M, Wang H, et al. 2015. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochem Mol Biol 63: 54–62.
- 56 Matsumoto Y, Hattori M. 2016. Gene silencing by parental rna interference in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). Arch Insect Biochem Physiol 91: 152–64.
- 57 Paim RM, Araujo RN, Lehane MJ, Gontijo NF, et al. 2013. Long-term effects and parental RNAi in the blood feeder Rhodnius prolixus (Hemiptera; Reduviidae). Insect Biochem Mol Biol 43: 1015–20.
- 58 Wang Y, Zhang H, Li H, Miao X. 2011. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE 6: e18644.
- 59 Killiny N, Hajeri S, Tiwari S, Gowda S, et al. 2014. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. PLoS ONE 9: e110536.
- 60 Yu N, Christiaens O, Liu JS, Niu JZ, et al. 2013. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20: 4–14.
- 61 Kulkarni MM, Booker M, Silver SJ, Friedman A, et al. 2006. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods 3: 833–8.
- 62 Beard CB, Mason PW, Aksoy S, Tesh RB, et al. 1992. Transformation of an insect symbiont and expression of a foreign gene in the chagas-disease vector Rhodnius prolixus. Am J Trop Med Hyg 46: 195–200.
- 63 Riehle MA, Jacobs-Lorena M. 2005. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem Molec 35: 699–707.
- 64 Eichler S, Schaub GA. 2002. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol 100: 17–27.
- 65 Dotson EM, Plikaytis B, Shinnick TM, Durvasula RV, et al. 2003. Transformation of Rhodococcus rhodnii, a symbiont of the Chagas disease vector Rhodnius prolixus, with integrative elements of the L1 mycobacteriophage. Infect Genet Evol 3: 103–9.
- 66 Araujo RN, Santos A, Pinto FS, Gontijo NF, et al. 2006. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Molec 36: 683–93.
- 67 Whitten MMA, Facey PD, Del Sol R, Fernandez-Martinez LT, et al. 2016. Symbiont-mediated RNA interference in insects. P Roy Soc B-Biol Sci 263: 1825.
- 68 Harington JS. 1960. Synthesis of thiamine and folic acid by Nocardia rhodnii, the micro-symbiont of Rhodnius prolixus. Nature 188: 1027–8.
- 69 Pachebat JA, van Keulen G, Whitten MM, Girdwood S, et al. 2013. Draft genome sequence of Rhodococcus rhodnii strain LMG5362, a symbiont of Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), the principle vector of Trypanosoma cruzi. Genome Announc 1: e00329-13.
- 70 Yen JH, Barr AR. 1971. New hypothesis of cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232: 657–8.
- 71 Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, et al. 2009. A Wolbachia Symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139: 1268–78.
- 72 Mayoral JG, Hussain M, Joubert DA, Iturbe-Ormaetxe I, et al. 2014. Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proc Natl Acad Sci USA 111: 18721–6.
- 73 Engel P, Moran NA. 2013. The gut microbiota of insects − diversity in structure and function. FEMS Microbiol Rev 37: 699–735.
- 74 Colman DR, Toolson EC, Takacs-Vesbach CD. 2012. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21: 5124–37.
- 75 Heyworth ER, Ferrari J. 2015. A facultative endosymbiont in aphids can provide diverse ecological benefits. J Evol Biol 28: 1753–60.
- 76 Nakamura Y, Yukuhiro F, Matsumura M, Noda H. 2012. Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47: 273–83.
- 77 Hendry TA, Hunter MS, Baltrus DA. 2014. The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl Environ Microbiol 80: 7161–8.
- 78 Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, et al. 2012. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109: 8618–22.
- 79 Hosokawa T, Ishii Y, Nikoh N, Fujie M, et al. 2016. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol 1: 15011.
- 80 Xue J, Zhou X, Zhang CX, Yu LL, et al. 2014. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology 15: 521.
- 81 Sanada-Morimura S, Matsumura M, Noda H. 2013. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J Hered 104: 821–9.
- 82 Dale C, Welburn SC. 2001. The endosymbionts of tsetse flies: manipulating host-parasite interactions. Int J Parasitol 31: 628–31.
- 83 Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, et al. 2006. Heritable endosymbionts of Drosophila. Genetics 174: 363–76.
- 84 Damodaram KJ, Ayyasamy A, Kempraj V. 2016. Commensal bacteria aid mate-selection in the fruit fly, Bactrocera dorsalis. Microb Ecol 72: 725–9.
- 85 Lundgren JG, Lehman RM. 2010. Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS ONE 5: e10831.
- 86 Yang Y, Yang J, Wu WM, Zhao J, et al. 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49: 12087–93.
- 87 Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, et al. 2015. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6: 7618.
- 88 Kenyon SG, Hunter MS. 2007. Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium Cardinium. J Evol Biol 20: 707–16.
- 89 Wilkes TE, Darby AC, Choi JH, Colbourne JK, et al. 2010. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Molecular Biology 19: 59–73.
- 90 Giorgini M, Monti MM, Caprio E, Stouthamer R, et al. 2009. Feminization and the collapse of haplodiploidyinan asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity (Edinb) 102: 365–71.
- 91 Vilanova C, Baixeras J, Latorre A, Porcar M. 2016. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol 7: 1005.
- 92 Shao Y, Spiteller D, Tang X, Ping L, et al. 2011. Crystallization of alpha- and beta-carotene in the foregut of Spodoptera larvae feeding on a toxic food plant. Insect Biochem Mol Biol 41: 273–81.
- 93 Yang J, Yang Y, Wu WM, Zhao J, et al. 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48: 13776–84.
- 94 Johnston PR, Rolff J. 2015. Host and symbiont jointly control gut microbiota during complete metamorphosis. PLoS Pathog 11: e1005246.
- 95 Kim JK, Han SH, Kim CH, Jo YH, et al. 2014. Molting-associated suppression of symbiont population and up-regulation of antimicrobial activity in the midgut symbiotic organ of the Riptortus-Burkholderia symbiosis. Dev Comp Immunol 43: 10–4.
- 96 Moya A, Pereto J, Gil R, Latorre A. 2008. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9: 218–29.
- 97 Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, et al. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res Int 22: 68–102.
- 98 Bass C, Denholm I, Williamson MS, Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121: 78–87.
- 99 Price DRG, Gatehouse JA. 2008. RNAi-mediated crop protection against insects. Trends Biotechnol 26: 393–400.
- 100 Scott JG, Michel K, Bartholomay LC, Siegfried BD, et al. 2013. Towards the elements of successful insect RNAi. J Insect Physiol 59: 1212–21.
- 101 Bachman PM, Huizinga KM, Jensen PD, Mueller G, et al. 2016. Ecological risk assessment for DvSnf7 RNA: a plant-incorporated protectant with targeted activity against western corn rootworm. Regul Toxicol Pharmacol 81: 77–88.
- 102 Fishilevich E, Velez AM, Storer NP, Li H, et al. 2016. RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Manag Sci 72: 1652–63.
- 103 Hunter W, Ellis J, Vanengelsdorp D, Hayes J, et al. 2010. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 6: e1001160.
- 104 Hunter WB, Glick E, Paldi N, Bextine BR. 2012. Advances in rna interference: dsrna treatment in trees and grapevines for insect pest suppression. Southwest Entomol 37: 85–7.
- 105 Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC. 2016. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6: 22587.
- 106 Kirk WDJ, Terry LI. 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr Forest Entomol 5: 301–10.
- 107 Goldbach R, Peters D. 1994. Possible causes of the emergence of tospovirus diseases. Semin Virol 5: 113–20.
- 108 Prins M, Goldbach R. 1998. The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6: 31–5.
- 109 Gao Y, Lei Z, Reitz SR. 2012. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag Sci 68: 1111–21.
- 110 Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE. 2015. RNA interference tools for the western flower thrips, Frankliniella occidentalis. J Insect Physiol 76: 36–46.
- 111 de Vries EJ, Jacobs G, Breeuwer JA. 2001. Growth and transmission of gut bacteria in the western flower thrips, Frankliniella occidentalis. J Invertebr Pathol 77: 129–37.
- 112 Chanbusarakum LJ, Ullman DE. 2009. Distribution and ecology of Frankliniella occidentalis (Thysanoptera: Thripidae) bacterial symbionts. Environ Entomol 38: 1069–77.
- 113 Facey PD, Meric G, Hitchings MD, Pachebat JA, et al. 2015. Draft genomes, phylogenetic reconstruction, and comparative genomics of two novel cohabiting bacterial symbionts isolated from Frankliniella occidentalis. Genome Biol Evol 7: 2188–202.
- 114 Moon SL, Dodd BJT, Brackney DE, Wilusz CJ, et al. 2015. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology 485: 322–9.
- 115 Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, et al. 2006. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 103: 4198–203.
- 116 Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF, Jr., et al. 2011. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 92: 151–5.
- 117 Maori E, Paldi N, Shafir S, Kalev H, et al. 2009. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18: 55–60.




