Summary
This chapter contains sections titled:
-
Introduction
-
Principal Component Analysis
-
Single‐Factor Analysis Model
-
EM Algorithm for a Single‐Factor Analyzer
-
Data Visualization in Latent Space
-
Mixtures of Factor Analyzers
-
AECM Algorithm for Fitting Mixtures of Factor Analyzers
-
Link of Factor Analysis with Probabilistic PCA
-
Mixtures of Probabilistic PCAs
-
Initialization of AECM Algorithm
-
Example 8.1: Simulated Data
-
Example 8.2: Wine Data
Citing Literature
Number of times cited according to CrossRef: 39
- Michael P. B. Gallaugher, Paul D. McNicholas, Parsimonious Mixtures of Matrix Variate Bilinear Factor Analyzers, Advanced Studies in Behaviormetrics and Data Science, 10.1007/978-981-15-2700-5_11, (177-196), (2020).
- Rebekah Berlin, Julie Cohen, The Convergence of Emotionally Supportive Learning Environments and College and Career Ready Mathematical Engagement in Upper Elementary Classrooms, AERA Open, 10.1177/2332858420957612, 6, 3, (233285842095761), (2020).
- Katherine E. Phillips, Lesley A. Norris, Philip C. Kendall, Separation Anxiety Symptom Profiles and Parental Accommodation Across Pediatric Anxiety Disorders, Child Psychiatry & Human Development, 10.1007/s10578-019-00949-7, (2020).
- Maria Brigida Ferraro, Paolo Giordani, Soft clustering, WIREs Computational Statistics , 10.1002/wics.1480, 12, 1, (2019).
- Xi Yang, Kaizhu Huang, Rui Zhang, Amir Hussain, Introduction to Deep Density Models with Latent Variables, Setting Foundations for the Creation of Public Value in Smart Cities, 10.1007/978-3-030-06073-2_1, (1-29), (2019).
- Geoffrey J. McLachlan, Sharon X. Lee, Suren I. Rathnayake, Finite Mixture Models, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-031017-100325, 6, 1, (355-378), (2019).
- Sharon X. Lee, CytoFA: Automated Gating of Mass Cytometry Data via Robust Skew Factor Analzyers, Advances in Knowledge Discovery and Data Mining, 10.1007/978-3-030-16148-4_40, (514-525), (2019).
- Chun‐Chen Tu, Florence Forbes, Benjamin Lemasson, Naisyin Wang, Prediction with high dimensional regression via hierarchically structured Gaussian mixtures and latent variables, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12370, 68, 5, (1485-1507), (2019).
- Cristina Tortora, Brian C. Franczak, Ryan P. Browne, Paul D. McNicholas, A Mixture of Coalesced Generalized Hyperbolic Distributions, Journal of Classification, 10.1007/s00357-019-09319-3, (2019).
- Andrea Lauria, Serena Peirone, Marco Del Giudice, Francesca Priante, Prabhakar Rajan, Michele Caselle, Salvatore Oliviero, Matteo Cereda, Identification of altered biological processes in heterogeneous RNA-sequencing data by discretization of expression profiles, Nucleic Acids Research, 10.1093/nar/gkz1208, (2019).
- Davia B. Steinberg, Valerie A. Simon, Bryan G. Victor, Poco D. Kernsmith, Joanne P. Smith-Darden, Onset Trajectories of Sexting and Other Sexual Behaviors Across High School: A Longitudinal Growth Mixture Modeling Approach, Archives of Sexual Behavior, 10.1007/s10508-019-1414-9, (2019).
- Franck Jaotombo, Study of the Mental Health Continuum Short Form (MHC-SF) amongst French Workers: a Combined Variable- and Person-Centered Approach, Journal of Well-Being Assessment, 10.1007/s41543-019-00022-z, (2019).
- Moshe Kim, Nir Billfeld, Semi-Parametric Correction for Endogenous Truncation Bias with Vox Populi Based Participation Decision, SSRN Electronic Journal, 10.2139/ssrn.3119495, (2018).
- Ana Alina Tudoran, Why do internet consumers block ads? New evidence from consumer opinion mining and sentiment analysis, Internet Research, 10.1108/IntR-06-2017-0221, (2018).
- Sharon X. Lee, Mining High-Dimensional CyTOF Data: Concurrent Gating, Outlier Removal, and Dimension Reduction, Databases Theory and Applications, 10.1007/978-3-319-68155-9_14, (178-189), (2017).
- Sharon M. McNicholas, Paul D. McNicholas, Ryan P. Browne, A Mixture of Variance-Gamma Factor Analyzers, Big and Complex Data Analysis, 10.1007/978-3-319-41573-4_18, (369-385), (2017).
- Xi Yang, Kaizhu Huang, Rui Zhang, Deep Mixtures of Factor Analyzers with Common Loadings: A Novel Deep Generative Approach to Clustering, Neural Information Processing, 10.1007/978-3-319-70087-8_73, (709-719), (2017).
- Thibaud Deguilhem, Jean-Philippe Berrou, Francois Combarnous, Using Your Ties to Get a Worse Job? The Differential Effects of Social Networks on Quality of Employment: Evidence from Colombia, SSRN Electronic Journal, 10.2139/ssrn.2955379, (2017).
- Nir Billfeld, Moshe Kim, Semi-Parametric Correction for Endogenous Truncation Bias with Vox Populi Based Participation Decision, SSRN Electronic Journal, 10.2139/ssrn.3108806, (2017).
- Stephen Adams, Peter A. Beling, A survey of feature selection methods for Gaussian mixture models and hidden Markov models, Artificial Intelligence Review, 10.1007/s10462-017-9581-3, (2017).
- Giuseppe Galloppo, Giovanni Trovato, Fundamental driver of fund style drift, Journal of Asset Management, 10.1057/s41260-016-0009-4, 18, 2, (99-123), (2016).
- Na Li, Man-Wai Mak, undefined, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 10.1109/ICASSP.2016.7472742, (5565-5569), (2016).
- Paul D. McNicholas, Model-Based Clustering, Journal of Classification, 10.1007/s00357-016-9211-9, 33, 3, (331-373), (2016).
- Paul D. McNicholas, References, Mixture Model-Based Classification, 10.1201/9781315373577, (181-204), (2016).
- Na Li, Man-Wai Mak, Jen-Tzung Chien, undefined, 2016 IEEE Spoken Language Technology Workshop (SLT), 10.1109/SLT.2016.7846263, (186-191), (2016).
- Jessica A. R. Logan, Jill M. Pentimonti, Introduction to Latent Class Analysis for Reading Fluency Research, The Fluency Construct, 10.1007/978-1-4939-2803-3, (309-332), (2016).
- G J McLachlan, S U Chang, Mixture modelling for cluster analysis, Statistical Methods in Medical Research, 10.1191/0962280204sm372ra, 13, 5, (347-361), (2016).
- Cristina Tortora, Paul D. McNicholas, Ryan P. Browne, A mixture of generalized hyperbolic factor analyzers, Advances in Data Analysis and Classification, 10.1007/s11634-015-0204-z, 10, 4, (423-440), (2015).
- Cristina Tortora, Mireille Gettler Summa, Marina Marino, Francesco Palumbo, Factor probabilistic distance clustering (FPDC): a new clustering method, Advances in Data Analysis and Classification, 10.1007/s11634-015-0219-5, 10, 4, (441-464), (2015).
- Wentao Fan, Nizar Bouguila, Expectation propagation learning of a Dirichlet process mixture of Beta-Liouville distributions for proportional data clustering, Engineering Applications of Artificial Intelligence, 10.1016/j.engappai.2015.03.016, 43, (1-14), (2015).
- Taufiq Hasan, John H. L. Hansen, Maximum Likelihood Acoustic Factor Analysis Models for Robust Speaker Verification in Noise, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 10.1109/TASLP.2013.2292356, 22, 2, (381-391), (2014).
- Irene Vrbik, Paul D. McNicholas, Parsimonious skew mixture models for model-based clustering and classification, Computational Statistics & Data Analysis, 10.1016/j.csda.2013.07.008, 71, (196-210), (2014).
- Jeffrey L. Andrews, Paul D. McNicholas, Variable Selection for Clustering and Classification, Journal of Classification, 10.1007/s00357-013-9139-2, 31, 2, (136-153), (2013).
- Silvia Cagnone, Cinzia Viroli, A factor mixture analysis model for multivariate binary data, Statistical Modelling: An International Journal, 10.1177/1471082X1101200303, 12, 3, (257-277), (2012).
- Chih-Hao Chang, Toshio Obi, Global Comparative Study on the Relationship between User’s Traits and Public e-Service Quality, Digital Democracy, 10.4018/978-1-4666-1740-7, (782-801), (2012).
- Tao Chen, Nevin L. Zhang, Tengfei Liu, Kin Man Poon, Yi Wang, Model-based multidimensional clustering of categorical data, Artificial Intelligence, 10.1016/j.artint.2011.09.003, 176, 1, (2246-2269), (2012).
- Chih-Hao Chang, Toshio Obi, Global Comparative Study on the Relationship between User’s Traits and Public e-Service Quality, Electronic Governance and Cross-Boundary Collaboration, 10.4018/978-1-60960-753-1, (87-106), (2012).
- Geoffrey J. McLachlan, Jangsun Baek, Suren I. Rathnayake, Mixtures of Factor Analysers for the Analysis of High‐Dimensional Data, Mixtures, undefined, (189-212), (2011).
- Yanzan Kevin Zhou, Bamshad Mobasher, Web User Segmentation Based on a Mixture of Factor Analyzers, E-Commerce and Web Technologies, 10.1007/11823865_2, (11-20), (2006).



