On the oxygenation‐dependent 129Xe T1 in blood
Abstract
The spin‐lattice relaxation time, T1, of hyperpolarized 129Xe in blood is sensitive to blood oxygenation. In particular, it has been shown that 129Xe T1 is shorter in venous blood than in arterial blood. We have studied the T1 of hyperpolarized 129Xe dissolved in human blood as a function of blood oxygenation level, sO2, in the physiological oxygenation range. We show that the 129Xe relaxation rate, $T_{1}^{-1}$, varies in a nonlinear fashion as a function of sO2. This finding suggests that direct interaction of xenon with the paramagnetic heme group of deoxyhemoglobin is not the dominant oxygenation‐dependent relaxation mechanism for 129Xe in blood. These results corroborate the idea that the oxygenation‐dependence of 129Xe T1 is determined by conformational changes of hemoglobin induced by oxygen binding. Copyright © 2000 John Wiley & Sons, Ltd.
Number of times cited: 23
- M. Albert, F. Hane and D. Balamore, Introduction, Hyperpolarized and Inert Gas MRI, 10.1016/B978-0-12-803675-4.00025-7, (xv-xx), (2017).
- K. Qing and K. Ruppert, Hyperpolarized Xenon-129 Dissolved-Phase Magnetic Resonance Imaging, Hyperpolarized and Inert Gas MRI, 10.1016/B978-0-12-803675-4.00011-7, (169-181), (2017).
- F.T. Hane, H. Imai, A. Kimura, H. Fujiwara, M. Rao, J.M. Wild and M.S. Albert, Brain Imaging Using Hyperpolarized Xenon MRI, Hyperpolarized and Inert Gas MRI, 10.1016/B978-0-12-803675-4.00016-6, (251-262), (2017).
- Haidong Li, Zhiying Zhang, Jianping Zhong, Weiwei Ruan, Yeqing Han, Xianping Sun, Chaohui Ye and Xin Zhou, Oxygen‐dependent hyperpolarized 129Xe brain MR, NMR in Biomedicine, 29, 3, (220-225), (2016).
- Marcus J. Couch, Barbara Blasiak, Boguslaw Tomanek, Alexei V. Ouriadov, Matthew S. Fox, Krista M. Dowhos and Mitchell S. Albert, Hyperpolarized and Inert Gas MRI: The Future, Molecular Imaging and Biology, 10.1007/s11307-014-0788-2, 17, 2, (149-162), (2014).
- Graham Norquay, General Leung, Neil J. Stewart, Gillian M. Tozer, Jan Wolber and Jim M. Wild, Relaxation and exchange dynamics of hyperpolarized 129Xe in human blood, Magnetic Resonance in Medicine, 74, 2, (303-311), (2014).
- Hong Liu, Optical Pumping and MRI of Hyperpolarized Spins, Biomedical Photonics Handbook, Second Edition, 10.1201/b17289-16, (453-482), (2014).
- Hirohiko Imai, Atsuomi Kimura, Kazue Akiyama, Chikako Ota, Kazuki Okimoto and Hideaki Fujiwara, Development of a fast method for quantitative measurement of hyperpolarized 129Xe dynamics in mouse brain, NMR in Biomedicine, 25, 2, (210-217), (2011).
- Frank Davis and Séamus Higson, Cyclotriveratylenes and Cryptophanes, Macrocycles, (255-324), (2011).
- Ryan J. Kraayvanger, Christopher P. Bidinosti, William Dominguez‐Viqueira, Juan Parra‐Robles, Matthew Fox, Wilfred W. Lam and Giles E. Santyr, Measurement of alveolar oxygen partial pressure in the rat lung using Carr‐Purcell‐Meiboom‐Gill spin–spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT, Magnetic Resonance in Medicine, 64, 5, (1484-1490), (2010).
- Hirohiko Imai, Atsuomi Kimura, Tsuyoshi Ito and Hideaki Fujiwara, Hyperpolarized 129Xe dynamic study in mouse lung under spontaneous respiration: Application to murine tumor B16BL6 melanoma, European Journal of Radiology, 10.1016/j.ejrad.2008.09.033, 73, 1, (196-205), (2010).
- Atsuomi KIMURA, Hirohiko IMAI, Tetsuya WAKAYAMA and Hideaki FUJIWARA, A Simple Method for Quantitative Measurement and Analysis of Hyperpolarized 129Xe Uptake Dynamics in Mouse Brain under Controlled Flow, Magnetic Resonance in Medical Sciences, 10.2463/mrms.7.179, 7, 4, (179-185), (2008).
- J.F. Dunn, Measuring Oxygenation In Vivo with MRS/MRI—From Gas Exchange to the Cell , Antioxidants & Redox Signaling, 10.1089/ars.2007.1625, 9, 8, (1157-1168), (2007).
- M O Leach, Magnetic resonance spectroscopy (MRS) in the investigation of cancer at The Royal Marsden Hospital and The Institute of Cancer Research, Physics in Medicine and Biology, 10.1088/0031-9155/51/13/R05, 51, 13, (R61-R82), (2006).
- Kai Ruppert, Jaime F. Mata, James R. Brookeman, Klaus D. Hagspiel and John P. Mugler, Exploring lung function with hyperpolarized 129Xe nuclear magnetic resonance, Magnetic Resonance in Medicine, 51, 4, (676-687), (2004).
- Anne Ziegler, Jean-Noël Hyacinthe, Philippe Choquet, Guillaume Duhamel, Emmanuelle Grillon, Jean-Louis Leviel and André Constantinesco, Laser-Polarized Xenon Nuclear Magnetic Resonance, a Potential Tool for Brain Perfusion Imaging: Measurement of the Xenon T1In Vivo, Imaging in Biological Research, Part A, 10.1016/S0076-6879(04)85009-2, (149-165), (2004).
- Atsuomi KIMURA, Tetsuya WAKAYAMA, Michiko NARAZAKI, Yoko KAWATA, Tsuyoshi UEYAMA and Hideaki FUJIWARA, Improvement of T1 Determination of Hyperpolarized 129Xe in Mouse Brain under Controlled-Flow, Magnetic Resonance in Medical Sciences, 10.2463/mrms.3.199, 3, 4, (199-205), (2004).
- Philippe Choquet, Jean‐Noël Hyacinthe, Guillaume Duhamel, Emmanuelle Grillon, Jean‐Louis Leviel, André Constantinesco and Anne Ziegler, Method to determine in vivo the relaxation time T1 of hyperpolarized xenon in rat brain, Magnetic Resonance in Medicine, 49, 6, (1014-1018), (2003).
- Andrea Cherubini and Angelo Bifone, Hyperpolarised xenon in biology, Progress in Nuclear Magnetic Resonance Spectroscopy, 10.1016/S0079-6565(02)00052-3, 42, 1-2, (1-30), (2003).
- Harald E. Möller, X. Josette Chen, Brian Saam, Klaus D. Hagspiel, G. Allan Johnson, Talissa A. Altes, Eduard E. de Lange and Hans‐Ulrich Kauczor, MRI of the lungs using hyperpolarized noble gases, Magnetic Resonance in Medicine, 47, 6, (1029-1051), (2002).
- Jan Wolber, Dominick J.O. McIntyre, Loreta M. Rodrigues, Paul Carnochan, John R. Griffiths, Martin O. Leach and Angelo Bifone, In vivo hyperpolarized 129Xe NMR spectroscopy in tumors, Magnetic Resonance in Medicine, 46, 3, (586-591), (2001).
- , Current Awareness, NMR in Biomedicine, 13, 6, (371-376), (2000).
- Hans‐Ulrich Kauczor, Current issues in hyperpolarized gases in MRI: biomedical investigations and clinical applications, NMR in Biomedicine, 13, 4, (173-175), (2000).




