The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

Communication

Highly Precise Shape Mimicry by a Difluorotoluene Deoxynucleoside, a Replication‐Competent Substitute for Thymidine*

Kevin M. Guckian

Department of Chemistry, University of Rochester Rochester, NY 14627 (USA), Fax: Int. code + (716)473‐6889, e‐mail: etk@etk.chem.rochester.edu

Search for more papers by this author
Prof. Eric T. Kool

Corresponding Author

Department of Chemistry, University of Rochester Rochester, NY 14627 (USA), Fax: Int. code + (716)473‐6889, e‐mail: etk@etk.chem.rochester.edu

Department of Chemistry, University of Rochester Rochester, NY 14627 (USA), Fax: Int. code + (716)473‐6889, e‐mail: etk@etk.chem.rochester.edu
Search for more papers by this author
First published: 07 January 2004
Cited by: 41
*

This research was supported by the National Institutes of Health (GM 52956). We thank Prof. T. R. Krugh for helpful discussions, Prof. W. D. Jones and Dr. R. Lachicotte for assistance with the crystallographic data, and Dr. J. Perlstein for assistance with the graphics.

Abstract

Large differences in the electrostatic properties of nucleosides can have surprisingly small effects on DNA replication. Size and shape appear to be more important, as structural studies of difluorotoluene deoxynucleoside 1, an isostere of thymidine (2), prove. The two nucleosides have virtually the same aromatic ring, almost identical sugar puckers, and very similar glycosidic angles (see the structural formulas). Hydrogen‐bonding capacity is apparently not crucial for templating in DNA replication.

Number of times cited: 41

  • , Indications of 5′ to 3′ Interbase Electron Transfer as the First Step of Pyrimidine Dimer Formation Probed by a Dinucleotide Analog, Chemistry – A European Journal, 23, 31, (7526-7537), (2017).
  • , DNA-Interactive Agents, The Organic Chemistry of Drug Design and Drug Action, 10.1016/B978-0-12-382030-3.00006-4, (275-331), (2014).
  • , Synthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes, Org. Biomol. Chem., 10.1039/C4OB01185F, 12, 39, (7844-7858), (2014).
  • , Artificial Genetic Sets Composed of Size‐Expanded Base Pairs, Angewandte Chemie International Edition, 52, 48, (12498-12508), (2013).
  • , Examining the base stacking interaction in a dinucleotide context via reversible cyclobutane dimer analogue formation under UV irradiation, RSC Advances, 3, 42, (19545), (2013).
  • , Künstliche genetische Systeme bestehend aus vergrößerten Basenpaaren, Angewandte Chemie, 125, 48, (12728-12739), (2013).
  • , Molecular Switching Behavior in Isosteric DNA Base Pairs, ChemPhysChem, 14, 6, (1219-1226), (2013).
  • , Measurement and Theory of Hydrogen Bonding Contribution to Isosteric DNA Base Pairs, Journal of the American Chemical Society, 134, 6, (3154), (2012).
  • , Structural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue, Biochemistry, 51, 7, (1476), (2012).
  • , Expanding the Horizon of the Thymine Isostere Biochemistry: Unique Cyclobutane Dimers Formed by Photoreaction between a Thymine and a Toluene Residue in the Dinucleotide Framework, Chemistry – A European Journal, 18, 25, (7823-7833), (2012).
  • , B Family DNA Polymerases Asymmetrically Recognize Pyrimidines and Purines, Biochemistry, 50, 33, (7243), (2011).
  • , Pyrimidine–pyrimidine base pairs stabilized by silver( i ) ions , Chem. Commun., 10.1039/C0CC04091F, 47, 3, (941-943), (2011).
  • , The kinetic and chemical mechanism of high-fidelity DNA polymerases, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804, 5, (1041), (2010).
  • , Incorporation of Thymine Nucleotides by DNA Polymerases through T–HgII–T Base Pairing, Angewandte Chemie International Edition, 49, 37, (6516-6519), (2010).
  • , Incorporation of Thymine Nucleotides by DNA Polymerases through T–HgII–T Base Pairing, Angewandte Chemie, 122, 37, (6666-6669), (2010).
  • , Unnatural Nucleosides with Unusual Base Pairing Properties, Current Protocols in Nucleic Acid Chemistry, 37, 1, (1.4.1-1.4.32), (2009).
  • , Nonpolar Nucleoside Mimics as Active Substrates for Human Thymidine Kinases, Journal of the American Chemical Society, 131, 15, (5488), (2009).
  • , Importance of Hydrogen Bonding for Efficiency and Specificity of the Human Mitochondrial DNA Polymerase, Journal of Biological Chemistry, 283, 21, (14402), (2008).
  • , Modified DNA Bases: Probing Base‐Pair Recognition by Polymerases, Modified Nucleosides, (49-74), (2008).
  • , The difluorotoluene debate—a decade later, Chem. Commun., 10.1039/B605414E, 35, (3665-3675), (2006).
  • , The Roles of Hydrogen Bonding and Sterics in RNA Interference, Angewandte Chemie, 118, 30, (5116-5119), (2006).
  • , The Roles of Hydrogen Bonding and Sterics in RNA Interference, Angewandte Chemie International Edition, 45, 30, (4994-4997), (2006).
  • , Bio-inspired Programmable Self-assembly on DNA Templates, Chemistry Letters, 10.1246/cl.2006.694, 35, 7, (694-699), (2006).
  • , Artificial metallo-DNA: a bio-inspired approach to metal array programming, Current Opinion in Chemical Biology, 8, 6, (592), (2004).
  • , A Set of Nonpolar Thymidine Nucleoside Analogues with Gradually Increasing Size, Organic Letters, 10.1021/ol048487u, 6, 22, (3949-3952), (2004).
  • , DNA-Interactive Agents, The Organic Chemistry of Drug Design and Drug Action, 10.1016/B978-0-08-051337-9.50011-0, (323-403), (2004).
  • , DNA Polymerase Template Interactions Probed by Degenerate Isosteric Nucleobase Analogs, Chemistry & Biology, 10, 9, (815), (2003).
  • , Active Site Tightness and Substrate Fit in DNA Replication, Annual Review of Biochemistry, 71, 1, (191), (2002).
  • , Orbitalwechselwirkungen in starken und schwachen Wasserstoffbrücken sind essentiell für die DNA‐Replikation, Angewandte Chemie, 114, 12, (2194-2197), (2002).
  • , Unnatural Nucleosides with Unusual Base Pairing Properties, Current Protocols in Nucleic Acid Chemistry, 5, 1, (1.4.1-1.4.13), (2001).
  • , Hydrogen Bonding, Base Stacking, and Steric Effects in DNA Replication, Annual Review of Biophysics and Biomolecular Structure, 30, 1, (1), (2001).
  • , Synthetically modified DNAs as substrates for polymerases, Current Opinion in Chemical Biology, 4, 6, (602), (2000).
  • , Einsichten in Stabilität und Replikation der DNA durch Nachahmung ihrer Struktur und Funktion, Angewandte Chemie, 112, 6, (1046-1068), (2000).
  • , Molecular Moment Similarity Between Several Nucleoside Analogs of Thymidine and Thymidine, Journal of Biomolecular Structure and Dynamics, 16, 6, (1169), (1999).
  • , Synthesis of the analogue nucleoside 3-deaza-2′-deoxycytidine and its template activity with DNA polymerase, Tetrahedron, 55, 41, (11985), (1999).
  • , Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine 1 1Edited by R. Huber, Journal of Molecular Biology, 10.1006/jmbi.1998.2426, 285, 5, (2021-2034), (1999).
  • , Selektivität der DNA‐Replikation: Basenpaargeometrie wichtiger als Wasserstoffbrücken, Angewandte Chemie, 110, 12, (1745-1747), (1999).
  • , Solution structure of a DNA duplex containing a replicable difluorotoluene–adenine pair, Nature Structural Biology, 5, 11, (954), (1998).
  • , Efficient replication between non-hydrogen-bonded nucleoside shape analogs, Nature Structural Biology, 5, 11, (950), (1998).
  • , Replication of non‐hydrogen bonded bases by DNA polymerases: A mechanism for steric matching, Biopolymers, 48, 1, (3-17), (1999).
  • , Bi-stranded, multisite replication of a base pair between difluorotoluene and adenine: confirmation by ‘inverse’ sequencing, Chemistry & Biology, 10.1016/S1074-5521(97)90300-8, 4, 12, (919-926), (1997).