The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

Communication

Synthesis of the Rheb and K‐Ras4B GTPases*

Yong‐Xiang Chen Dr.

Abteilung Chemische Biologie, Max‐Planck‐Institut für molekulare Physiologie, Otto‐Hahn‐Strasse 11, 44227 Dortmund (Germany)

Fachbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto‐Hahn‐Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐133‐2499

These authors contributed equally to this work.Search for more papers by this author
Sebastian Koch Dr.

Abteilung Chemische Biologie, Max‐Planck‐Institut für molekulare Physiologie, Otto‐Hahn‐Strasse 11, 44227 Dortmund (Germany)

Fachbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto‐Hahn‐Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐133‐2499

These authors contributed equally to this work.Search for more papers by this author
Katharina Uhlenbrock Dr.

Abteilung Strukturelle Biologie, Max‐Planck‐Institut für molekulare Physiologie (Germany)

These authors contributed equally to this work.Search for more papers by this author
Katrin Weise Dr.

Physikalische Chemie I, Technische Universität Dortmund (Germany)

Search for more papers by this author
Debapratim Das Dr.

Abteilung Chemische Biologie, Max‐Planck‐Institut für molekulare Physiologie, Otto‐Hahn‐Strasse 11, 44227 Dortmund (Germany)

Fachbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto‐Hahn‐Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐133‐2499

Search for more papers by this author
Lothar Gremer Dr.

Abteilung Strukturelle Biologie, Max‐Planck‐Institut für molekulare Physiologie (Germany)

Search for more papers by this author
Luc Brunsveld Prof. Dr.

Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology (The Netherlands)

Search for more papers by this author
Alfred Wittinghofer Prof. Dr.

Abteilung Strukturelle Biologie, Max‐Planck‐Institut für molekulare Physiologie (Germany)

Search for more papers by this author
Roland Winter Prof. Dr.

Physikalische Chemie I, Technische Universität Dortmund (Germany)

Search for more papers by this author
Gemma Triola Dr.

Abteilung Chemische Biologie, Max‐Planck‐Institut für molekulare Physiologie, Otto‐Hahn‐Strasse 11, 44227 Dortmund (Germany)

Fachbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto‐Hahn‐Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐133‐2499

Search for more papers by this author
Herbert Waldmann Prof. Dr.

E-mail address:herbert.waldmann@mpi‐dortmund.mpg.de

Abteilung Chemische Biologie, Max‐Planck‐Institut für molekulare Physiologie, Otto‐Hahn‐Strasse 11, 44227 Dortmund (Germany)

Fachbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto‐Hahn‐Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐133‐2499

Search for more papers by this author
First published: 12 August 2010
Cited by: 40
*

This research was supported by the Max‐Planck‐Gesellschaft, the Fonds der Chemischen Industrie, the DFG (SFB 642), and the Alexander von Humboldt‐Stiftung. We are grateful to Dr. C. Goemans and Prof. Dr. R. Heumann for providing DNA templates of Rheb, and C. Nowak for technical assistance.

Abstract

Now available! Farnesylated and carboxymethylated Rheb (see picture) and K‐Ras4B GTPases were synthesized in useful amounts by a combination of expressed protein ligation and solid‐phase lipopeptide synthesis. The functionality of the proteins was proven by biochemical, biophysical, and cell‐based investigations.

Number of times cited: 40

  • , Interaction of KRas4B protein with C6-ceramide containing lipid model membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, (2018).
  • , Small‐Molecule Inhibition of the UNC119–Cargo Interaction, Angewandte Chemie, 129, 22, (6277-6282), (2017).
  • , Small‐Molecule Inhibition of the UNC119–Cargo Interaction, Angewandte Chemie International Edition, 56, 22, (6181-6186), (2017).
  • , Phosphorylation Weakens but Does Not Inhibit Membrane Binding and Clustering of K-Ras4B, ACS Chemical Biology, 10.1021/acschembio.7b00165, 12, 6, (1703-1710), (2017).
  • , Chemoselective Attachment of Lipids to Proteins, Chemoselective and Bioorthogonal Ligation Reactions, (391-415), (2017).
  • , Identification of novel PDEδ interacting proteins, Bioorganic & Medicinal Chemistry, (2017).
  • , Structural Biology-Inspired Discovery of Novel KRAS–PDEδ Inhibitors, Journal of Medicinal Chemistry, 10.1021/acs.jmedchem.7b01243, 60, 22, (9400-9406), (2017).
  • , PDEδ Binding to Ras Isoforms Provides a Route to Proper Membrane Localization, The Journal of Physical Chemistry B, 10.1021/acs.jpcb.7b03035, 121, 24, (5917-5927), (2017).
  • , Facile synthesis of Fmoc-protected phosphonate pSer mimetic and its application in assembling a substrate peptide of 14-3-3 ζ, Tetrahedron Letters, 10.1016/j.tetlet.2017.05.037, 58, 26, (2551-2553), (2017).
  • , Regulation of K-Ras4B Membrane Binding by Calmodulin, Biophysical Journal, 10.1016/j.bpj.2016.05.042, 111, 1, (113-122), (2016).
  • , Sorting of lipidated cargo by the Arl2/Arl3 system, Small GTPases, 7, 4, (222), (2016).
  • , Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ, Proceedings of the National Academy of Sciences, 113, 44, (E6766), (2016).
  • , High Affinity Immobilization of Proteins Using the CrAsH/TC Tag, Molecules, 21, 12, (750), (2016).
  • , Lipoprotein insertion into membranes of various complexity: lipid sorting, interfacial adsorption and protein clustering, Physical Chemistry Chemical Physics, 18, 13, (8954), (2016).
  • , Synthesis of Lipidated Proteins, Bioconjugate Chemistry, 10.1021/acs.bioconjchem.6b00261, 27, 8, (1771-1783), (2016).
  • , Specificity of Lipoprotein Chaperones for the Characteristic Lipidated Structural Motifs of their Cognate Lipoproteins, ChemBioChem, 16, 17, (2460-2465), (2015).
  • , Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions, Scientific Reports, 10.1038/srep15916, 5, 1, (2015).
  • , Inhibition of Oncogenic K‐Ras Signaling by Targeting K‐Ras–PDEδ Interaction, Concepts and Case Studies in Chemical Biology, (105-122), (2014).
  • , Thermodynamic, Dynamic and Solvational Properties of PDEδ Binding to Farnesylated Cystein: A Model Study for Uncovering the Molecular Mechanism of PDEδ Interaction with Prenylated Proteins, The Journal of Physical Chemistry B, 10.1021/jp411466r, 118, 4, (966-975), (2014).
  • , Chemical Biology Tools for Regulating RAS Signaling Complexity in Space and Time, Chemistry & Biology, 21, 9, (1185), (2014).
  • , The Renaissance of Ras, ACS Chemical Biology, 9, 11, (2447), (2014).
  • , Structure Guided Design and Kinetic Analysis of Highly Potent Benzimidazole Inhibitors Targeting the PDEδ Prenyl Binding Site, Journal of Medicinal Chemistry, 57, 12, (5435), (2014).
  • , Design of thiol-containing amino acids for native chemical ligation at non-Cys sites, Chinese Chemical Letters, 10.1016/j.cclet.2013.03.013, 24, 4, (265-269), (2013).
  • , Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling, Nature, 497, 7451, (638), (2013).
  • , Synthesis of Autophagosomal Marker Protein LC3‐II under Detergent‐Free Conditions, Angewandte Chemie International Edition, 52, 18, (4858-4862), (2013).
  • , Synthesis of Autophagosomal Marker Protein LC3‐II under Detergent‐Free Conditions, Angewandte Chemie, 125, 18, (4958-4962), (2013).
  • , Semisynthetic Lipidated LC3 Protein Mediates Membrane Fusion, ChemBioChem, 14, 11, (1296-1300), (2013).
  • , Rotational and Translational Dynamics of Ras Proteins upon Binding to Model Membrane Systems, ChemPhysChem, 14, 16, (3698-3705), (2013).
  • , Gibbs energy determinants of lipoprotein insertion into lipid membranes: the case study of Ras proteins, Faraday Discuss., 161, (549), (2013).
  • , Chemical Synthesis of Proteins, Organic Chemistry – Breakthroughs and Perspectives, (221-245), (2012).
  • , Chemical Biology of Lipidated Proteins, ACS Chemical Biology, 7, 1, (87), (2012).
  • , Dissociation of the K-Ras4B/PDEδ Complex upon Contact with Lipid Membranes: Membrane Delivery Instead of Extraction, Journal of the American Chemical Society, 134, 28, (11503), (2012).
  • , The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction, European Biophysics Journal, 10.1007/s00249-012-0841-5, 41, 10, (801-813), (2012).
  • , The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins, Nature Cell Biology, 14, 2, (148), (2012).
  • , Chemical‐Biological Exploration of the Limits of the Ras De‐ and Repalmitoylating Machinery, ChemBioChem, 13, 7, (1017-1023), (2012).
  • , K-Ras4B lipoprotein synthesis: Biochemical characterization, functional properties, and dimer formation, Protein Expression and Purification, 84, 1, (86), (2012).
  • , Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo, Nature Chemical Biology, 7, 12, (942), (2011).
  • , Exploring Protein Lipidation with Chemical Biology, Chemical Reviews, 10.1021/cr2001977, 111, 10, (6341-6358), (2011).
  • , Membrane-Mediated Induction and Sorting of K-Ras Microdomain Signaling Platforms, Journal of the American Chemical Society, 133, 4, (880), (2011).
  • , PDE6δ-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity, Nature Communications, 10.1038/ncomms11366, 7, (11366), (2016).