The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

Communication

Orthogonal Protein Decoration of DNA Origami*

Dr. Barbara Saccà

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

These authors contributed equally to this work.Search for more papers by this author
Dipl.‐Chem. Rebecca Meyer

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

These authors contributed equally to this work.Search for more papers by this author
Dipl.‐Biotechnol. Michael Erkelenz

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

Search for more papers by this author
M. Sc. Kathrin Kiko

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

Search for more papers by this author
Andreas Arndt

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

Search for more papers by this author
Dr. Hendrik Schroeder

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

Search for more papers by this author
Dr. Kersten S. Rabe

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

Search for more papers by this author
Prof. Christof M. Niemeyer

Corresponding Author

E-mail address:christof.niemeyer@tu‐dortmund.de

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082

Technische Universität Dortmund, Fakultät Chemie, Biologisch‐Chemische Mikrostrukturtechnik, Otto‐Hahn Strasse 6, 44227 Dortmund (Germany), Fax: (+49) 231‐755‐7082
Search for more papers by this author
First published: 28 October 2010
Cited by: 145
*

This work was supported by the Deutsche Forschungsgemeinschaft (SA 1952/1‐1, NI 399/10‐1) and the Max‐Planck Society (fellowship to C.M.N.). We are most grateful to Prof. Kai Johnsson for the generous donation of the covalin expression plasmid and helpful discussions. We also thank Prof. Mathias Sprinzl for kind donation of a plasmid encoding for EST2, and Dr. Michael Adler for help with IPCR analyses. Stephanie Reisewitz and Julian Engel are acknowledged for experimental support in cloning.

Abstract

If the face fits: Self‐labeling fusion proteins have been used for the site‐specific decoration of DNA origami. This method even allows individual faces of the quasi‐two‐dimensional plane of the nanostructure to be specifically decorated (see picture), thereby enabling directional immobilization and thus control over the accessibility of distinct proteins presented on the structure.

Number of times cited: 145

  • , Applications of Synchrotron‐Based Spectroscopic Techniques in Studying Nucleic Acids and Nucleic‐Acid‐Based Nanomaterials, Synchrotron Radiation in Materials Science, (687-756), (2018).
  • , A Modularly Designable Vesicle for Sequentially Multiple Loading, Small, 14, 8, (2017).
  • , DNA-based construction at the nanoscale: emerging trends and applications, Nanotechnology, 10.1088/1361-6528/aaa120, 29, 6, (062001), (2018).
  • , Fabrication of Defined Polydopamine Nanostructures by DNA Origami‐Templated Polymerization, Angewandte Chemie International Edition, 57, 6, (1587-1591), (2018).
  • , Fabrication of Defined Polydopamine Nanostructures by DNA Origami‐Templated Polymerization, Angewandte Chemie, 130, 6, (1603-1607), (2018).
  • , Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization, Small, 14, 23, (2018).
  • , Protein‐Functionalized DNA Nanostructures as Tools to Control Transcription in Zebrafish Embryos, ChemistryOpen, 6, 1, (33-39), (2016).
  • , DNA‐Origami‐Driven Lithography for Patterning on Gold Surfaces with Sub‐10 nm Resolution, Advanced Materials, 29, 11, (2017).
  • , Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing, Nanoscale, 10.1039/C7NR03696E, 9, 39, (15098-15106), (2017).
  • , Tunable Fluorescence of a Semiconducting Polythiophene Positioned on DNA Origami, Nano Letters, 10.1021/acs.nanolett.7b02623, 17, 8, (5163-5170), (2017).
  • , Design of Modular Protein Tags for Orthogonal Covalent Bond Formation at Specific DNA Sequences, Journal of the American Chemical Society, 10.1021/jacs.7b01640, 139, 25, (8487-8496), (2017).
  • , “DNA Origami Traffic Lights” with a Split Aptamer Sensor for a Bicolor Fluorescence Readout, Nano Letters, 17, 4, (2467), (2017).
  • , DNA Nanostructure Sequence-Dependent Binding of Organophosphates, Langmuir, 33, 8, (2033), (2017).
  • , Engineering Cell Surface Function with DNA Origami, Advanced Materials, 29, 46, (2017).
  • , Supramolecular Protein Assemblies Based on DNA Templates, The Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.7b01564, 8, 17, (3970-3979), (2017).
  • , Primary Amine-Clustered DNA Aptamer for DNA–Protein Conjugation Catalyzed by Microbial Transglutaminase, Bioconjugate Chemistry, 28, 12, (2954), (2017).
  • , DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels, Nucleic Acids Research, 45, 21, (12057), (2017).
  • , Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami, ACS Synthetic Biology, 6, 7, (1140), (2017).
  • , DNA Origami: Scaffolds for Creating Higher Order Structures, Chemical Reviews, 10.1021/acs.chemrev.6b00825, 117, 20, (12584-12640), (2017).
  • , Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy, Chemical Communications, 53, 53, (7393), (2017).
  • , Control of enzyme reactions by a reconfigurable DNA nanovault, Nature Communications, 10.1038/s41467-017-01072-8, 8, 1, (2017).
  • , Beyond the Fold: Emerging Biological Applications of DNA Origami, ChemBioChem, 17, 12, (1081-1089), (2016).
  • , Single‐Stranded Tile Stoppers for Interlocked DNA Architectures, ChemBioChem, 17, 12, (1146-1149), (2016).
  • , Topological DNA Assemblies Containing Identical or Fraternal Twins, ChemBioChem, 17, 12, (1142-1145), (2016).
  • , A Rationally Designed Connector for Assembly of Protein‐Functionalized DNA Nanostructures, ChemBioChem, 17, 12, (1102-1106), (2016).
  • , Bottom‐Up Fabrication of Nanopatterned Polymers on DNA Origami by In Situ Atom‐Transfer Radical Polymerization, Angewandte Chemie, 128, 19, (5786-5791), (2016).
  • , Patterning protein complexes on DNA nanostructures using a GFP nanobody, Protein Science, 25, 11, (2089-2094), (2016).
  • , Co‐Immobilization of Proteins and DNA Origami Nanoplates to Produce High‐Contrast Biomolecular Nanoarrays, Small, 12, 21, (2877-2884), (2016).
  • , DNA Nanostructures Carrying Stoichiometrically Definable Antibodies, Small, 12, 40, (5601-5611), (2016).
  • , Daunorubicin‐Loaded DNA Origami Nanostructures Circumvent Drug‐Resistance Mechanisms in a Leukemia Model, Small, 12, 3, (308-320), (2015).
  • , Bottom‐Up Fabrication of Nanopatterned Polymers on DNA Origami by In Situ Atom‐Transfer Radical Polymerization, Angewandte Chemie International Edition, 55, 19, (5692-5697), (2016).
  • , A highly versatile platform based on geometrically well-defined 3D DNA nanostructures for selective recognition and positioning of multiplex targets, Nanoscale, 10.1039/C6NR05411K, 8, 43, (18291-18295), (2016).
  • , Probing Nucleosome Stability with a DNA Origami Nanocaliper, ACS Nano, 10, 7, (7073), (2016).
  • , Self‐Assembled DNA Nanostructures for Drug Delivery, Chinese Journal of Chemistry, 34, 3, (265-272), (2016).
  • , RNA Study Using DNA Nanotechnology, Nanotechnology Tools for the Study of RNA, 10.1016/bs.pmbts.2015.11.004, (121-163), (2016).
  • , Suspending DNA Origami Between Four Gold Nanodots, Small, 12, 2, (169-173), (2015).
  • , Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks, ACS Applied Materials & Interfaces, 8, 45, (31239), (2016).
  • , A Novel Self-Assembling DNA Nano Chip for Rapid Detection of Human Papillomavirus Genes, PLOS ONE, 11, 10, (e0162975), (2016).
  • , Smart Materials for DNA-Based Nanoconstructions, Design, Fabrication, Properties and Applications of Smart and Advanced Materials, 10.1201/b19977-3, (13-52), (2016).
  • , Transfer of Two‐Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA‐Origami‐Based Nanoimprinting Lithography, Angewandte Chemie International Edition, 55, 28, (8036-8040), (2016).
  • , Transfer of Two‐Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA‐Origami‐Based Nanoimprinting Lithography, Angewandte Chemie, 128, 28, (8168-8172), (2016).
  • , , Angewandte Chemie, 128, 13, (4421-4425), (2016).
  • , Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases, Angewandte Chemie International Edition, 55, 13, (4348-4352), (2016).
  • , Stimuliresponsive DNA‐funktionalisierte Nano‐ und Mikrocontainer zur schaltbaren und kontrollierten Freisetzung, Angewandte Chemie, 127, 42, (12380-12405), (2015).
  • , Assembly and Purification of Enzyme‐Functionalized DNA Origami Structures, Angewandte Chemie International Edition, 54, 23, (6745-6750), (2015).
  • , Assembly and Purification of Enzyme‐Functionalized DNA Origami Structures, Angewandte Chemie, 127, 23, (6849-6854), (2015).
  • , Stimuli‐Responsive DNA‐Functionalized Nano‐/Microcontainers for Switchable and Controlled Release, Angewandte Chemie International Edition, 54, 42, (12212-12235), (2015).
  • , Enantiogroup‐Differentiating Biocatalytic Reductions of Prochiral Cs‐Symmetrical Dicarbonyl Compounds to meso Compounds, Chemistry – A European Journal, 21, 24, (8701-8705), (2015).
  • , A Bipedal DNA Motor that Travels Back and Forth between Two DNA Origami Tiles, Small, 11, 5, (568-575), (2014).
  • , DNA-Origamis as Protein Nanocarriers, Enzyme Nanocarriers, 10.1201/b18970-7, (193-206), (2015).
  • , Direct Design of an Energy Landscape with Bistable DNA Origami Mechanisms, Nano Letters, 10.1021/nl5045633, 15, 3, (1815-1821), (2015).
  • , Computational Approaches to Nucleic Acid Origami, ACS Combinatorial Science, 10.1021/acscombsci.5b00079, 17, 10, (535-547), (2015).
  • , Three-dimensional DNA nanostructures for colorimetric assay of nucleic acids, J. Mater. Chem. B, 3, 14, (2853), (2015).
  • , Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications, Tissue Engineering Part B: Reviews, 10.1089/ten.teb.2014.0494, 21, 3, (288-297), (2015).
  • , Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis, The Analyst, 10.1039/C5AN00861A, 140, 17, (5821-5848), (2015).
  • , Poster Presentations, Regenerative Medicine, 10, 7s, (S96), (2015).
  • , DNA Nanostructures as Programmable Biomolecular Scaffolds, Bioconjugate Chemistry, 10.1021/acs.bioconjchem.5b00194, 26, 8, (1381-1395), (2015).
  • TRANSDUCERS 2015 - 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference Anchorage, AK, USA 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) IEEE , (2015). 978-1-4799-8955-3 Selective assembly of DNA nanostructure bridging onto a trenched silicon substrate , (2015). 1389 1392 7181192 , 10.1109/TRANSDUCERS.2015.7181192 http://ieeexplore.ieee.org/document/7181192/
  • , Construction of Functional DNA Nanostructures for Theranostic Applications, Advanced Theranostic Materials, (93-130), (2015).
  • , Programmable motion of DNA origami mechanisms, Proceedings of the National Academy of Sciences, 10.1073/pnas.1408869112, 112, 3, (713-718), (2015).
  • , Engineering Amyloid Fibrils from β-Solenoid Proteins for Biomaterials Applications, ACS Nano, 9, 1, (449), (2015).
  • , Mechanical design of DNA nanostructures, Nanoscale, 10.1039/C4NR07153K, 7, 14, (5913-5921), (2015).
  • , Optimizing gold nanoparticle seeding density on DNA origami, RSC Advances, 10.1039/C4RA15451G, 5, 11, (8134-8141), (2015).
  • , Precise construction of oligonucleotide–Fab fragment conjugate for homogeneous immunoassay using HaloTag technology, Analytical Biochemistry, 472, (37), (2015).
  • , Role of Alumina Coatings for Selective and Controlled Bonding of DNA on Technologically Relevant Oxide Surfaces, The Journal of Physical Chemistry C, 119, 41, (23527), (2015).
  • , A modular zinc finger adaptor accelerates the covalent linkage of proteins at specific locations on DNA nanoscaffolds, Chemical Communications, 51, 6, (1016), (2015).
  • , Applications of Synchrotron‐Based Spectroscopic Techniques in Studying Nucleic Acids and Nucleic Acid‐Functionalized Nanomaterials, Advanced Materials, 26, 46, (7849-7872), (2014).
  • , DNA Nanoarchitectures: Steps towards Biological Applications, ChemBioChem, 15, 10, (1374-1390), (2014).
  • , Structural DNA Nanotechnology: State of the Art and Future Perspective, Journal of the American Chemical Society, 10.1021/ja505101a, 136, 32, (11198-11211), (2014).
  • , Engineering DNA Self-Assemblies as Templates for Functional Nanostructures, Accounts of Chemical Research, 47, 6, (1654), (2014).
  • , Microarrays and single molecules: an exciting combination, Soft Matter, 10.1039/c3sm52561a, 10, 7, (931), (2014).
  • , Nanolithography Based on Metalized DNA Templates for Graphene Patterning, Current Protocols in Chemical Biology, 6, 2, (53-64), (2014).
  • , Advances in DNA-directed immobilization, Current Opinion in Chemical Biology, 10.1016/j.cbpa.2013.10.023, 18, (8-15), (2014).
  • , Paramagnetic Decoration of DNA Origami Nanostructures by Eu 3+ Coordination , Langmuir, 10.1021/la501112a, 30, 27, (8152-8159), (2014).
  • , Back Cover: Membrane‐Spanning DNA Nanopores with Cytotoxic Effect (Angew. Chem. Int. Ed. 46/2014), Angewandte Chemie International Edition, 53, 46, (12644-12644), (2014).
  • , DNA from natural sources in design of functional devices, Methods, 10.1016/j.ymeth.2014.03.003, 67, 2, (105-115), (2014).
  • , Surface‐Assisted Large‐Scale Ordering of DNA Origami Tiles, Angewandte Chemie International Edition, 53, 29, (7665-7668), (2014).
  • , Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles, The Journal of Physical Chemistry C, 118, 2, (1174), (2014).
  • , Oberflächenunterstützte großflächige Anordnung von DNA‐Origami‐Kacheln, Angewandte Chemie, 126, 29, (7797-7801), (2014).
  • , A protein adaptor to locate a functional protein dimer on molecular switchboard, Methods, 10.1016/j.ymeth.2013.10.014, 67, 2, (142-150), (2014).
  • , Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells, Nanoscale, 6, 15, (9122), (2014).
  • , Identification of Ligand–Target Pairs from Combined Libraries of Small Molecules and Unpurified Protein Targets in Cell Lysates, Journal of the American Chemical Society, 136, 8, (3264), (2014).
  • , Low Temperature Assembly of Functional 3D DNA-PNA-Protein Complexes, Journal of the American Chemical Society, 136, 23, (8283), (2014).
  • , Single Molecule Characterization of DNA Binding and Strand Displacement Reactions on Lithographic DNA Origami Microarrays, Nano Letters, 14, 3, (1627), (2014).
  • , Synthesis and properties of a Cu( ii ) complexing pyrazole ligandoside in DNA , Chem. Commun., 10.1039/C3CC47561A, 50, 4, (409-411), (2014).
  • , Plug-and-Play Pairing via Defined Divalent Streptavidins, Journal of Molecular Biology, 10.1016/j.jmb.2013.09.016, 426, 1, (199-214), (2014).
  • , Membrane‐Spanning DNA Nanopores with Cytotoxic Effect, Angewandte Chemie, 126, 46, (12674-12678), (2014).
  • , DNA‐templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry, Critical Reviews in Analytical Chemistry, 10.1080/10408347.2014.910636, 44, 4, (354-370), (2014).
  • , Smart Drug Delivery Nanocarriers with Self‐Assembled DNA Nanostructures, Advanced Materials, 25, 32, (4386-4396), (2013).
  • , Functional DNA Nanostructures for Photonic and Biomedical Applications, Small, 9, 13, (2210-2222), (2013).
  • , Lipid‐Bilayer‐Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor, Angewandte Chemie, 125, 46, (12291-12294), (2013).
  • , Quantum Efficiency Modification of Organic Fluorophores Using Gold Nanoparticles on DNA Origami Scaffolds, The Journal of Physical Chemistry C, 117, 24, (12735), (2013).
  • , DNA Origami as a DNA Repair Nanosensor at the Single‐Molecule Level, Angewandte Chemie, 125, 30, (7901-7904), (2013).
  • , Manipulation of DNA origami nanotubes in liquid using programmable tapping-mode atomic force microscopy, Micro & Nano Letters, 8, 10, (641), (2013).
  • , Ligand-induced electron spin-assembly on a DNA tile, Chemical Communications, 10.1039/c3cc41801d, 49, 57, (6370), (2013).
  • , Nucleic acid nanostructures for biomedical applications, Nanomedicine, 8, 1, (105), (2013).
  • , Kinetic Enhancements in DNA–Enzyme Nanostructures Mimic the Sabatier Principle, ACS Catalysis, 3, 4, (560), (2013).
  • , Enzymatic Ligation of Large Biomolecules to DNA, ACS Nano, 7, 9, (8098), (2013).
  • , A Universal DNA-Based Protein Detection System, Journal of the American Chemical Society, 10.1021/ja405872g, 135, 38, (14008-14011), (2013).
  • , Clickable Tyrosine Binding Bifunctional Linkers for Preparation of DNA–Protein Conjugates, Bioconjugate Chemistry, 10.1021/bc4001799, 24, 6, (1094-1101), (2013).
  • , Detailed Study of DNA Hairpin Dynamics Using Single-Molecule Fluorescence Assisted by DNA Origami, The Journal of Physical Chemistry B, 117, 40, (11932), (2013).
  • , Lipid‐Bilayer‐Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor, Angewandte Chemie International Edition, 52, 46, (12069-12072), (2013).
  • , DNA-Mediated Assembly of Protein Heterodimers on Membrane Surfaces, Journal of the American Chemical Society, 10.1021/ja3101215, 135, 13, (5012-5016), (2013).
  • , Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif, PLoS ONE, 8, 8, (e69856), (2013).
  • , DNA origami technology for biomaterials applications, Biomater. Sci., 1, 4, (347), (2013).
  • , DNA Origami as a DNA Repair Nanosensor at the Single‐Molecule Level, Angewandte Chemie International Edition, 52, 30, (7747-7750), (2013).
  • , Programmed nucleic acid assembly for nanomedicines, Nucleic Acid-Based Drugs, 10.4155/ebo.13.438, (116-131), (2013).
  • , DNA Origami Nanopillars as Standards for Three-Dimensional Superresolution Microscopy, Nano Letters, 13, 2, (781), (2013).
  • , Molecular Threading and Tunable Molecular Recognition on DNA Origami Nanostructures, Journal of the American Chemical Society, 10.1021/ja403863a, 135, 33, (12172-12175), (2013).
  • , DNA Nanoarchitectonics: Assembled DNA at Interfaces, Langmuir, 10.1021/la3045785, 29, 24, (7344-7353), (2013).
  • , A bioinspired self assembled dimeric porphyrin pocket that binds electron accepting ligands, Chemical Communications, 48, 12, (1793), (2012).
  • , DNA‐Origami: die Kunst, DNA zu falten, Angewandte Chemie, 124, 1, (60-69), (2011).
  • , Zinc‐Finger Proteins for Site‐Specific Protein Positioning on DNA‐Origami Structures, Angewandte Chemie International Edition, 51, 10, (2421-2424), (2012).
  • , Zinc‐Finger Proteins for Site‐Specific Protein Positioning on DNA‐Origami Structures, Angewandte Chemie, 124, 10, (2471-2474), (2012).
  • , Programmable protein–protein conjugation via DNA-based self-assembly, Chemical Communications, 10.1039/c2cc30618b, 48, 50, (6226), (2012).
  • , Photo-Controllable DNA Origami Nanostructures Assembling into Predesigned Multiorientational Patterns, Journal of the American Chemical Society, 134, 51, (20645), (2012).
  • , Artificial Protein Complexes for Biocatalysis, Topics in Catalysis, 10.1007/s11244-012-9900-5, 55, 16-18, (1124-1137), (2012).
  • , Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures, Accounts of Chemical Research, 10.1021/ar200295q, 45, 8, (1215-1226), (2012).
  • , Functionalized DNA Nanostructures, Chemical Reviews, 10.1021/cr200104q, 112, 4, (2528-2556), (2012).
  • , Virus scaffolds as enzyme nano-carriers, Trends in Biotechnology, 30, 7, (369), (2012).
  • , Interenzyme Substrate Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA Nanostructures, Journal of the American Chemical Society, 10.1021/ja300897h, 134, 12, (5516-5519), (2012).
  • , Directed Supramolecular Surface Assembly of SNAP‐tag Fusion Proteins, Chemistry – A European Journal, 18, 22, (6788-6794), (2012).
  • , DNA Origami: The Art of Folding DNA, Angewandte Chemie International Edition, 51, 1, (58-66), (2011).
  • , Orthogonal Protein Decoration of DNA Nanostructures, Small, 7, 22, (3211-3218), (2011).
  • , Covalent Tethering of Protruding Arms for Addressable DNA Nanostructures, Small, 7, 20, (2887-2898), (2011).
  • , Functional Patterning of DNA Origami by Parallel Enzymatic Modification, Bioconjugate Chemistry, 22, 4, (819), (2011).
  • , A primer to scaffolded DNA origami, Nature Methods, 10.1038/nmeth.1570, 8, 3, (221-229), (2011).
  • , In situ monitoring of single molecule binding reactions with time-lapse atomic force microscopy on functionalized DNA origami, Nanoscale, 3, 6, (2481), (2011).
  • , SNAP Dendrimers: Multivalent Protein Display on Dendrimer-Like DNA for Directed Evolution, ChemBioChem, 12, 14, (2208), (2011).
  • , Site‐Specific Synthesis and In Situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds by Use of the Tollens Reaction, Angewandte Chemie, 123, 18, (4262-4265), (2011).
  • , DNA-guided display of proteins and protein ligands for the interrogation of biology, Chemical Society Reviews, 10.1039/c1cs15054e, 40, 12, (5789), (2011).
  • , DNA-Mediated Assembly of Cytochrome P450 BM3 Subdomains, Journal of the American Chemical Society, 10.1021/ja204993s, 133, 40, (16111-16118), (2011).
  • , DNA origami: a quantum leap for self-assembly of complex structures, Chemical Society Reviews, 40, 12, (5636), (2011).
  • , Functionalization of DNA nanostructures with proteins, Chemical Society Reviews, 10.1039/c1cs15212b, 40, 12, (5910), (2011).
  • , DNA as a Molecular Ruler: Interrogation of a Tandem SH2 Domain with Self-Assembled, Bivalent DNA-Peptide Complexes, Angewandte Chemie International Edition, 50, 18, (4146), (2011).
  • , Encapsulation of Gold Nanoparticles in a DNA Origami Cage, Angewandte Chemie, 123, 9, (2089-2092), (2011).
  • , Site‐Specific Synthesis and In Situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds by Use of the Tollens Reaction, Angewandte Chemie International Edition, 50, 18, (4176-4179), (2011).
  • , Encapsulation of Gold Nanoparticles in a DNA Origami Cage, Angewandte Chemie International Edition, 50, 9, (2041-2044), (2011).
  • , Photon-Regulated DNA-Enzymatic Nanostructures by Molecular Assembly, ACS Nano, 10.1021/nn204007y, 5, 12, (10090-10095), (2011).
  • , DNA as a Molecular Ruler: Interrogation of a Tandem SH2 Domain with Self-Assembled, Bivalent DNA-Peptide Complexes, Angewandte Chemie, 123, 18, (4232), (2011).
  • , DNA-Directed Artificial Light-Harvesting Antenna, Journal of the American Chemical Society, 10.1021/ja1115138, 133, 31, (11985-11993), (2011).
  • , Comparative Incorporation of PNA into DNA Nanostructures, Molecules, 10.3390/molecules200917645, 20, 9, (17645-17658), (2015).
  • , Challenges and opportunities for structural DNA nanotechnology, Nature Nanotechnology, 10.1038/nnano.2011.187, 6, 12, (763-772), (2011)., (2011).
  • , Structural DNA Nanotechnology: From Design to Applications, International Journal of Molecular Sciences, 10.3390/ijms13067149, 13, 12, (7149-7162), (2012).
  • , Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions, Nature Communications, 10.1038/ncomms14472, 8, (14472), (2017).