Parameter Estimation and Model Selection for Neyman‐Scott Point Processes
Abstract
This paper proposes an approximative method for maximum likelihood estimation of parameters of Neyman‐Scott and similar point processes. It is based on the point pattern resulting from forming all difference points of pairs of points in the window of observation. The intensity function of this constructed point process can be expressed in terms of second‐order characteristics of the original process. This opens the way to parameter estimation, if the difference pattern is treated as a non‐homogeneous Poisson process. The computational feasibility and accuracy of this approach is examined by means of simulated data. Furthermore, the method is applied to two biological data sets. For these data, various cluster process models are considered and compared with respect to their goodness‐of‐fit. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Citing Literature
Number of times cited according to CrossRef: 44
- Magnus Ekström, Saskia Sandring, Anton Grafström, Per‐Anders Esseen, Bengt Gunnar Jonsson, Göran Ståhl, Estimating density from presence/absence data in clustered populations, Methods in Ecology and Evolution, 10.1111/2041-210X.13347, 11, 3, (390-402), (2020).
- Adrian Baddeley, Gopalan Nair, Suman Rakshit, Greg McSwiggan, Tilman M. Davies, Analysing point patterns on networks — A review, Spatial Statistics, 10.1016/j.spasta.2020.100435, (100435), (2020).
- Frédéric Lavancier, Arnaud Poinas, Rasmus Waagepetersen, Adaptive estimating function inference for nonstationary determinantal point processes, Scandinavian Journal of Statistics, 10.1111/sjos.12440, 0, 0, (2020).
- Ka Yiu Wong, Dietrich Stoyan, Poles of pair correlation functions: When they are real?, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-020-00754-3, (2020).
- Claes Andersson, Tomáš Mrkvička, Inference for cluster point processes with over- or under-dispersed cluster sizes, Statistics and Computing, 10.1007/s11222-020-09960-8, (2020).
- Jiří Dvořák, Jesper Møller, Tomáš Mrkvička, Samuel Soubeyrand, Quick inference for log Gaussian Cox processes with non-stationary underlying random fields, Spatial Statistics, 10.1016/j.spasta.2019.100388, (100388), (2019).
- Celia Chaiban, Christophe Biscio, Weerapong Thanapongtharm, Michael Tildesley, Xiangming Xiao, Timothy P. Robinson, Sophie O. Vanwambeke, Marius Gilbert, Point pattern simulation modelling of extensive and intensive chicken farming in Thailand: Accounting for clustering and landscape characteristics, Agricultural Systems, 10.1016/j.agsy.2019.03.004, 173, (335-344), (2019).
- TL Silva, G Fay, TA Mooney, J Robbins, MT Weinrich, CD Carson, TVN Cole, MA Thompson, DN Wiley, Habitat use of toothed whales in a marine protected area based on point process models, Marine Ecology Progress Series, 10.3354/meps12820, 609, (239-256), (2019).
- Ben C. Stevenson, David L. Borchers, Rachel M. Fewster, Cluster capture‐recapture to account for identification uncertainty on aerial surveys of animal populations, Biometrics, 10.1111/biom.12983, 75, 1, (326-336), (2019).
- Daniel A. Griffith, Yongwan Chun, Bin Li, MESF and generalized linear regression, Spatial Regression Analysis Using Eigenvector Spatial Filtering, 10.1016/B978-0-12-815043-6.00005-7, (97-113), (2019).
- Jean-François Coeurjolly, Frédéric Lavancier, Understanding Spatial Point Patterns Through Intensity and Conditional Intensities, Stochastic Geometry, 10.1007/978-3-030-13547-8_2, (45-85), (2019).
- Michael J. Plank, Asymptotic expansion approximation for spatial structure arising from directionally biased movement, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2019.123290, (2019).
- Chang Gong, Robert A. Anders, Qingfeng Zhu, Janis M. Taube, Benjamin Green, Wenting Cheng, Imke H. Bartelink, Paolo Vicini, Bing Wang, Aleksander S. Popel, Quantitative Characterization of CD8+ T Cell Clustering and Spatial Heterogeneity in Solid Tumors, Frontiers in Oncology, 10.3389/fonc.2018.00649, 8, (2019).
- Andrei L. Badescu, Tianle Chen, X. Sheldon Lin, Dameng Tang, A MARKED COX MODEL FOR THE NUMBER OF IBNR CLAIMS: ESTIMATION AND APPLICATION, ASTIN Bulletin, 10.1017/asb.2019.15, (1-31), (2019).
- Yosihiko Ogata, Cluster analysis of spatial point patterns: posterior distribution of parents inferred from offspring, Japanese Journal of Statistics and Data Science, 10.1007/s42081-019-00065-9, (2019).
- Charlotte M. Jones‐Todd, Peter Caie, Janine B. Illian, Ben C. Stevenson, Anne Savage, David J. Harrison, James L. Bown, Identifying prognostic structural features in tissue sections of colon cancer patients using point pattern analysis, Statistics in Medicine, 10.1002/sim.8046, 38, 8, (1421-1441), (2018).
- Inger Fabris-Rotelli, Alfred Stein, Inhomogeneous spatial modelling of DPT pulses for marine images, Spatial Statistics, 10.1016/j.spasta.2018.08.004, 28, (257-270), (2018).
- Felix Ballani, Arne Pommerening, Dietrich Stoyan, Mark-mark scatterplots improve pattern analysis in spatial plant ecology, Ecological Informatics, 10.1016/j.ecoinf.2018.11.002, (2018).
- Anna Tovo, Marco Favretti, The distance decay of similarity in tropical rainforests. A spatial point processes analytical formulation, Theoretical Population Biology, 10.1016/j.tpb.2018.01.001, 120, (78-89), (2018).
- Murray G. Efford, Christine M. Hunter, Spatial capture–mark–resight estimation of animal population density, Biometrics, 10.1111/biom.12766, 74, 2, (411-420), (2017).
- Adrian Baddeley, Local composite likelihood for spatial point processes, Spatial Statistics, 10.1016/j.spasta.2017.03.001, 22, (261-295), (2017).
- Jesper Møller, Rasmus Waagepetersen, Some Recent Developments in Statistics for Spatial Point Patterns, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-060116-054055, 4, 1, (317-342), (2017).
- Chong Deng, Yongtao Guan, Rasmus P. Waagepetersen, Jingfei Zhang, Second‐order quasi‐likelihood for spatial point processes, Biometrics, 10.1111/biom.12694, 73, 4, (1311-1320), (2017).
- Jean‐François Coeurjolly, Jesper Møller, Rasmus Waagepetersen, A Tutorial on Palm Distributions for Spatial Point Processes, International Statistical Review, 10.1111/insr.12205, 85, 3, (404-420), (2016).
- Andrei L Badescu, X. Sheldon Lin, Dameng Tang, A Marked Cox Model for the Number of IBNR Claims: Estimation and Application, SSRN Electronic Journal, 10.2139/ssrn.2747223, (2016).
- Abdollah Jalilian, On the higher order product density functions of a Neyman–Scott cluster point process, Statistics & Probability Letters, 10.1016/j.spl.2016.05.003, 117, (144-150), (2016).
- Jiří Kopecký, Tomáš Mrkvička, On the Bayesian estimation for the stationary Neyman-Scott point processes, Applications of Mathematics, 10.1007/s10492-016-0144-8, 61, 4, (503-514), (2016).
- Kise Lee, Jeonghwan Kim, No-wook Park, Woojoo Lee, Analyzing landslide data using Cauchy cluster process, Korean Journal of Applied Statistics, 10.5351/KJAS.2016.29.2.345, 29, 2, (345-354), (2016).
- Pei-Jian Shi, Hardev S. Sandhu, Gadi V.P. Reddy, Dispersal distance determines the exponent of the spatial Taylor’s power law, Ecological Modelling, 10.1016/j.ecolmodel.2016.05.008, 335, (48-53), (2016).
- Jesper Møller, Mohammad Ghorbani, Ege Rubak, Mechanistic spatio‐temporal point process models for marked point processes, with a view to forest stand data, Biometrics, 10.1111/biom.12466, 72, 3, (687-696), (2015).
- Adrian Baddeley, Rolf Turner, Ege Rubak, Adjusted composite likelihood ratio test for spatial Gibbs point processes, Journal of Statistical Computation and Simulation, 10.1080/00949655.2015.1044530, 86, 5, (922-941), (2015).
- Malte Kuhlmann, Claudia Redenbach, Estimation of Fibre Length Distributions from Fibre Endpoints, Scandinavian Journal of Statistics, 10.1111/sjos.12148, 42, 4, (1010-1022), (2015).
- Yan Sun, Dan Ralescu, A normal hierarchical model and minimum contrast estimation for random intervals, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-014-0453-1, 67, 2, (313-333), (2014).
- Jesper Møller, Håkon Toftaker, Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes, Scandinavian Journal of Statistics, 10.1111/sjos.12041, 41, 2, (414-435), (2014).
- Ushio Tanaka, Yosihiko Ogata, Identification and estimation of superposed Neyman–Scott spatial cluster processes, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-013-0431-z, 66, 4, (687-702), (2014).
- C. Deng, R. P. Waagepetersen, Y. Guan, A combined estimating function approach for fitting stationary point process models, Biometrika, 10.1093/biomet/ast069, 101, 2, (393-408), (2014).
- References, Stochastic Geometry and its Applications, undefined, (453-505), (2013).
- Mohammad Ghorbani, Testing the weak stationarity of a spatio-temporal point process, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-012-0597-6, 27, 2, (517-524), (2012).
- Michaela Prokešová, Eva B. Vedel Jensen, Asymptotic Palm likelihood theory for stationary point processes, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-012-0376-7, 65, 2, (387-412), (2012).
- ABDOLLAH JALILIAN, YONGTAO GUAN, RASMUS WAAGEPETERSEN, Decomposition of Variance for Spatial Cox Processes, Scandinavian Journal of Statistics, 10.1111/j.1467-9469.2012.00795.x, 40, 1, (119-137), (2012).
- ADRIAN BADDELEY, YA‐MEI CHANG, YONG SONG, Leverage and Influence Diagnostics for Spatial Point Processes, Scandinavian Journal of Statistics, 10.1111/j.1467-9469.2011.00786.x, 40, 1, (86-104), (2012).
- Mohammad Ghorbani, Cauchy cluster process, Metrika, 10.1007/s00184-012-0411-y, 76, 5, (697-706), (2012).
- Ichiro K. Shimatani, Spatially explicit neutral models for population genetics and community ecology: Extensions of the Neyman–Scott clustering process, Theoretical Population Biology, 10.1016/j.tpb.2009.10.006, 77, 1, (32-41), (2010).
- Mari Myllymäki, Antti Penttinen, Conditionally heteroscedastic intensity‐dependent marking of log Gaussian Cox processes, Statistica Neerlandica, 10.1111/j.1467-9574.2009.00433.x, 63, 4, (450-473), (2009).




