Volume 24, Issue 2
Original Paper

Linear Logistic Latent Class Analysis

Dr. Anton K. Formann

Corresponding Author

Institut für Psychologie, Universität Wien

The author wishes to thank Dr. Ilse ROP for her helpful suggestions in preparing the final version of the manuscript.

Institut für Psychologie der Universität Wien A ‐ 1010 Wien I, Liebiggasse 5Search for more papers by this author
First published: 1982
Citations: 27

Abstract

In the present paper the linear logistic extension of latent class analysis is described. Thereby it is assumed that the item latent probabilities as well as the class sizes can be attributed to some explanatory variables. The basic equations of the model state the decomposition of the log‐odds of the item latent probabilities and of the class sizes into weighted sums of basic parameters representing the effects of the predictor variables. Further, the maximum likelihood equations for these effect parameters and statistical tests for goodness‐of‐fit are given. Finally, an example illustrates the practical application of the model and the interpretation of the model parameters.

Number of times cited according to CrossRef: 27

  • Regularized Latent Class Analysis for Polytomous Item Responses: An Application to SPM-LS Data, Journal of Intelligence, 10.3390/jintelligence8030030, 8, 3, (30), (2020).
  • A latent-class model for estimating product-choice probabilities from clickstream data, Information Sciences, 10.1016/j.ins.2017.11.014, 429, (406-420), (2018).
  • Prediction of Response to Electroconvulsive Therapy, British Journal of Psychiatry, 10.1192/bjp.157.1.65, 157, 1, (65-71), (2018).
  • Statistical inference in constrained latent class models for multinomial data based on $$\phi $$ ϕ -divergence measures, Advances in Data Analysis and Classification, 10.1007/s11634-017-0289-7, 12, 3, (605-636), (2017).
  • Power and Sample Size Computation for Wald Tests in Latent Class Models, Journal of Classification, 10.1007/s00357-016-9199-1, 33, 1, (30-51), (2016).
  • Structural Latent Class Models, Sociological Methods & Research, 10.1177/0049124198026004005, 26, 4, (530-565), (2016).
  • Latent class analysis in medical research, Statistical Methods in Medical Research, 10.1177/096228029600500205, 5, 2, (179-211), (2016).
  • A Simulation Study of the Difference Chi-Square Statistic for Comparing Latent Class Models Under Violation of Regularity Conditions, Applied Psychological Measurement, 10.1177/014662168901300301, 13, 3, (221-231), (2016).
  • Minimum $$\phi $$ ϕ -Divergence Estimation in Constrained Latent Class Models for Binary Data, Psychometrika, 10.1007/s11336-015-9450-4, 80, 4, (1020-1042), (2015).
  • Latent Class Analysis , Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
  • Measuring Change in Latent Subgroups Using Dichotomous Data: Unconditional, Conditional, and Semiparametric Maximum Likelihood Estimation, Journal of the American Statistical Association, 10.1080/01621459.1994.10476838, 89, 427, (1027-1034), (2012).
  • Effects of Particulate Air Pollution on Cardiovascular Health: A Population Health Risk Assessment, PLoS ONE, 10.1371/journal.pone.0033385, 7, 3, (e33385), (2012).
  • Probabilistic subgroup identification using Bayesian finite mixture modelling: A case study in Parkinson's disease phenotype identification, Statistical Methods in Medical Research, 10.1177/0962280210391012, 21, 6, (563-583), (2010).
  • Bibliography, Latent Class and Latent Transition Analysis, undefined, (266-278), (2010).
  • References, Statistical Factor Analysis and Related Methods, undefined, (690-731), (2008).
  • 19 Mixture Distribution Item Response Models, Psychometrics, 10.1016/S0169-7161(06)26019-X, (643-661), (2006).
  • 16 Rasch Models, Psychometrics, 10.1016/S0169-7161(06)26016-4, (515-585), (2006).
  • 13 Latent Class Analysis in Psychometrics, Psychometrics, 10.1016/S0169-7161(06)26013-9, (421-446), (2006).
  • Latent Class Analysis, Encyclopedia of Statistical Sciences, 10.1002/0471667196, (2004).
  • Editorial: recent developments in mixture models, Computational Statistics & Data Analysis, 10.1016/S0167-9473(02)00161-5, 41, 3-4, (349-357), (2003).
  • Latent class model diagnostics—a review and some proposals, Computational Statistics & Data Analysis, 10.1016/S0167-9473(02)00186-X, 41, 3-4, (549-559), (2003).
  • Latent Variable Regression for Multiple Discrete Outcomes, Journal of the American Statistical Association, 10.1080/01621459.1997.10473658, 92, 440, (1375-1386), (1997).
  • A review of reliable maximum likelihood algorithms for semiparametric mixture models, Journal of Statistical Planning and Inference, 10.1016/0378-3758(94)00119-G, 47, 1-2, (5-28), (1995).
  • Linear Logistic Latent Class Analysis for Polytomous Data, Journal of the American Statistical Association, 10.1080/01621459.1992.10475229, 87, 418, (476-486), (1992).
  • Concomitant-Variable Latent-Class Models, Journal of the American Statistical Association, 10.1080/01621459.1988.10478584, 83, 401, (173-178), (1988).
  • New Developments in Latent Class Theory, Latent Trait and Latent Class Models, 10.1007/978-1-4757-5644-9, (77-108), (1988).
  • Latent Structure Analysis of a Set of Multidimensional Contingency Tables, Journal of the American Statistical Association, 10.1080/01621459.1984.10477093, 79, 388, (762-771), (1984).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.