The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

Note to the Editor

Extraction of uranium from sea water using biological origin adsorbents

M. Tsezos

Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7

Search for more papers by this author
S. H. Noh

Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7

Search for more papers by this author
First published: August 1984
Cited by: 14

Abstract

en

Waste microbial biomass has been shown to be a good adsorbent for uranium. A small scale pilot plant was operated at Woods Hole Oceanographic Institute in collaboration with the Department of Nuclear Engineering of MIT in order to assess the potential use of the two selected types of microbial biomass to sequester uranium from sea water effectively. The experimental results suggest that factors such as the presence of carbonates in the sea water, suppress substantially the uranium adsorptive uptake capacity of the biomass. The selectivity of the biomass for uranium, is not as good as that of other synthetic inorganic or organic adsorbents as, for example, hydrous titanium oxide.

Abstract

fr

On a démontré qu'une biomasse microbienne considérée comme un déchet était un bon adsorbant pour l'uranium. On a mis sur pied une petite usine‐pilote à l'Institut Océanographique de Woods Hole en collaboration avec le Département de Génie nucléaire du MIT; le but était d'évaluer le potentiel d'utilisation de deux types choisis de biomasse microbienne pour séparer efficacement l'uranium de l'eau de mer. Les résultats expérimentaux suggèrent que la présence de carbonates dans l'eau de mer diminue fortement la capacité d'adsorption de l'uranium pour la biomasse. La sélectivité de la biomasse pour l'uranium n'est pas aussi bonne que celle d'autres adsorbants synthétiques inorganiques ou organiques tels que, par exemple, l'oxyde de titane en milieu aqueux.

Number of times cited: 14

  • , Sequestration of U(VI) from Acidic, Alkaline, and High Ionic-Strength Aqueous Media by Functionalized Magnetic Mesoporous Silica Nanoparticles: Capacity and Binding Mechanisms, Environmental Science & Technology, 51, 24, (14330), (2017).
  • , Synthesis of polyamidoxime-functionalized nanoparticles for uranium(VI) removal from neutral aqueous solutions, Journal of Radioanalytical and Nuclear Chemistry, 10.1007/s10967-015-3988-6, 305, 2, (445-453), (2015).
  • , Uranium (VI) recovery from saline environment by a marine unicellular cyanobacterium, Synechococcus elongatus, Journal of Radioanalytical and Nuclear Chemistry, 295, 2, (845), (2013).
  • , Recovery of Uranium from Seawater: A Review of Current Status and Future Research Needs, Separation Science and Technology, 10.1080/01496395.2012.712599, 48, 3, (367-387), (2013).
  • , Insights into the interactions of cyanobacteria with uranium, Photosynthesis Research, 10.1007/s11120-013-9928-9, 118, 1-2, (83-94), (2013).
  • , Adsorption of Uranium on a Novel Bioadsorbent-Chitosan-Coated Perlite, Nuclear Technology, 159, 1, (59), (2007).
  • , Adsorption of uranium on halloysite, Radiochimica Acta, 90, 3, (2002).
  • , Biosorptive behaviour of Mango (Mangifera indica) and Neem (Azadirachta indica) bark for Hg2+, Cr3+ and Cd2+ toxic ions from aqueous solutions: a radiotracer study, Applied Radiation and Isotopes, 50, 4, (631), (1999).
  • , Accumulation of60Co2+and UO2+2Ions on Hydrophyte Plants, Isotopes in Environmental and Health Studies, 35, 3, (213), (1999).
  • , Biosorption of metals using nonliving biomass — A review, Mining, Metallurgy & Exploration, 10.1007/BF03403102, 12, 4, (189-196), (1995).
  • , Separation of heavy metals from industrial waste streams by membrane separation technology, Waste Management, 13, 5-7, (481), (1993).
  • , The continuous recovery of uranium from biologically leached solutions using immobilized biomass, Biotechnology and Bioengineering, 34, 1, (10-17), (2004).
  • , Influence of anions on metal adsorption by Rhizopus arrhizus biomass, Biotechnology and Bioengineering, 30, 7, (882-886), (2004).
  • , The Selective Extraction of Metals from Solution by Micro-Organisms. A Brief Overview, Canadian Metallurgical Quarterly, 24, 2, (141), (1985).