Volume 38, Issue 3

Small area estimation of poverty indicators

Isabel Molina

Corresponding Author

E-mail address: isabel.molina@uc3m.es

Department of Statistics, Universidad Carlos III de Madrid, Getafe, Madrid 28903, Spain

Department of Statistics, Universidad Carlos III de Madrid, Getafe, Madrid 28903, Spain.Search for more papers by this author
J. N. K. Rao

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

Search for more papers by this author
First published: 17 March 2010
Citations: 81

Abstract

en

The authors propose to estimate nonlinear small area population parameters by using the empirical Bayes (best) method, based on a nested error model. They focus on poverty indicators as particular nonlinear parameters of interest, but the proposed methodology is applicable to general nonlinear parameters. They use a parametric bootstrap method to estimate the mean squared error of the empirical best estimators. They also study small sample properties of these estimators by model‐based and design‐based simulation studies. Results show large reductions in mean squared error relative to direct area‐specific estimators and other estimators obtained by “simulated” censuses. The authors also apply the proposed method to estimate poverty incidences and poverty gaps in Spanish provinces by gender with mean squared errors estimated by the mentioned parametric bootstrap method. For the Spanish data, results show a significant reduction in coefficient of variation of the proposed empirical best estimators over direct estimators for practically all domains. The Canadian Journal of Statistics 38: 369–385; 2010 © 2010 Statistical Society of Canada

Abstract

fr

Les auteurs proposent d'estimer les paramètres non linéaires d'une population de petits domaines en utilisant une méthode bayésienne empirique. L'emphase est mise sur les indicateurs de pauvreté comme paramètres non linéaires d'intérêt particuliers, mais ils proposent une méthodologie qui s'applique à des paramètres non linéaires plus généraux. Ils utilisent une méthode de rééchantillonnage paramétrique pour estimer l'erreur quadratique moyenne du meilleur estimateur empirique. À l'aide de simulations basées sur le modèle et sur le plan de sondage, ils étudient les propriétés de ces estimateurs pour les petits échantillons. Les résultats obtenus montrent une grande réduction de l'erreur quadratique moyenne par rapport aux estimateurs propres aux régions et les autres estimateurs obtenus par recensements « simulés». Les auteurs ont aussi appliqué la méthodologie proposée à l'estimation des incidences de pauvreté et des disparités, en fonction du sexe, du niveau de la pauvreté des provinces espagnoles. Les erreurs quadratiques moyennes sont estimées en utilisant la méthode de rééchantillonnage paramétrique citée auparavant. Pour les données espagnoles, les résultats montrent une réduction substantielle du coefficient de variation des meilleurs estimateurs empiriques proposés par rapport aux estimateurs spécifiques pour pratiquement tous les domaines. La revue canadienne de statistique 38: 369–385; 2010 © 2010 Société statistique du Canada

Number of times cited according to CrossRef: 81

  • Estimation of Child Undernutrition at Disaggregated Administrative Tiers of a North-Eastern District of Bangladesh: An Application of Small Area Estimation Method, Statistics for Data Science and Policy Analysis, 10.1007/978-981-15-1735-8, (267-281), (2020).
  • A functional approach to small area estimation of the relative median poverty gap, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12562, 183, 3, (1273-1291), (2020).
  • Robust Small Area Estimation: An Overview, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-031219-041212, 7, 1, (337-360), (2020).
  • Indirect estimation of poverty indicators at poviat level, Wiadomości Statystyczne. The Polish Statistician, 10.5604/01.3001.0014.3524, 65, 8, (7), (2020).
  • Qualität der regionalen Armutsmessung – vom Design zum Modell, Qualität bei zusammengeführten Daten, 10.1007/978-3-658-31009-7_2, (7-25), (2020).
  • Disaggregated level child morbidity in Bangladesh: An application of small area estimation method, PLOS ONE, 10.1371/journal.pone.0220164, 15, 5, (e0220164), (2020).
  • Smoothing and Benchmarking for Small Area Estimation, International Statistical Review, 10.1111/insr.12373, 0, 0, (2020).
  • Mapping Poverty of Latin American and Caribbean Countries from Heaven Through Night-Light Satellite Images, Social Indicators Research, 10.1007/s11205-020-02267-1, (2020).
  • Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data, PLOS ONE, 10.1371/journal.pone.0230906, 15, 4, (e0230906), (2020).
  • Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects, Statistical Methods & Applications, 10.1007/s10260-020-00521-x, (2020).
  • Small area estimation with spatially varying natural exponential families, Journal of Statistical Computation and Simulation, 10.1080/00949655.2020.1714048, (1-18), (2020).
  • Empirical Bayes small area prediction under a zero‐inflated lognormal model with correlated random area effects, Biometrical Journal, 10.1002/bimj.202000029, 0, 0, (2020).
  • Small area estimation with mixed models: a review, Japanese Journal of Statistics and Data Science, 10.1007/s42081-020-00076-x, (2020).
  • Data‐driven transformations in small area estimation, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12488, 183, 1, (121-148), (2019).
  • Parametric modelling of M‐quantile regression coefficient functions with application to small area estimation, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12495, 183, 1, (229-250), (2019).
  • The geography of poverty: Review and research prospects, Journal of Rural Studies, 10.1016/j.jrurstud.2019.01.008, (2019).
  • Adaptively transformed mixed‐model prediction of general finite‐population parameters, Scandinavian Journal of Statistics, 10.1111/sjos.12380, 46, 4, (1025-1046), (2019).
  • A Comparison of Methods for Poverty Estimation in Developing Countries, International Statistical Review, 10.1111/insr.12314, 87, 2, (368-392), (2019).
  • The fayherriot command for estimating small-area indicators, The Stata Journal: Promoting communications on statistics and Stata, 10.1177/1536867X19874238, 19, 3, (626-644), (2019).
  • Small area estimation of general parameters: Bayesian transformed spatial prediction approach, Japanese Journal of Statistics and Data Science, 10.1007/s42081-019-00067-7, (2019).
  • On properties of empirical best predictors, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2019.1649422, (1-34), (2019).
  • Hierarchical Bayesian models for continuous and positively skewed data from small areas, Communications in Statistics - Theory and Methods, 10.1080/03610926.2019.1645853, (1-19), (2019).
  • Small area mean estimation after effect clustering, Journal of Applied Statistics, 10.1080/02664763.2019.1648390, (1-22), (2019).
  • Small area estimation under unit-level temporal linear mixed models, Journal of Statistical Computation and Simulation, 10.1080/00949655.2019.1590578, (1-29), (2019).
  • A generalized mixed model for skewed distributions applied to small area estimation, TEST, 10.1007/s11749-018-0594-2, 28, 2, (565-597), (2018).
  • My Chancy Life as a Statistician, International Statistical Review, 10.1111/insr.12296, 87, S1, (S3-S9), (2018).
  • Small Area Quantile Estimation, International Statistical Review, 10.1111/insr.12293, 87, S1, (S219-S238), (2018).
  • Combining Data from New and Traditional Sources in Population Surveys, International Statistical Review, 10.1111/insr.12292, 87, S1, (S79-S89), (2018).
  • Localised Estimates of Dynamics of Multi‐dimensional Disadvantage: An Application of the Small Area Estimation Technique Using Australian Survey and Census Data, International Statistical Review, 10.1111/insr.12270, 87, 1, (1-23), (2018).
  • From start to finish: a framework for the production of small area official statistics, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12364, 181, 4, (927-979), (2018).
  • The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12349, 181, 4, (1077-1104), (2018).
  • Small area estimation of general parameters under complex sampling designs, Computational Statistics & Data Analysis, 10.1016/j.csda.2017.11.007, 121, (20-40), (2018).
  • Small area estimation of complex parameters under unit‐level models with skew‐normal errors, Scandinavian Journal of Statistics, 10.1111/sjos.12336, 45, 4, (1092-1116), (2018).
  • CO2 emissions and poverty alleviation in China: An empirical study based on municipal panel data, Journal of Cleaner Production, 10.1016/j.jclepro.2018.08.221, 202, (883-891), (2018).
  • Empirical Best Predictor for Nested Error Regression Small Area Models, IOP Conference Series: Earth and Environmental Science, 10.1088/1755-1315/187/1/012036, 187, (012036), (2018).
  • Localised estimates and spatial mapping of poverty incidence in the state of Bihar in India—An application of small area estimation techniques, PLOS ONE, 10.1371/journal.pone.0198502, 13, 6, (e0198502), (2018).
  • Local Geographies of Digital Inequality, Social Science Computer Review, 10.1177/0894439317693332, 36, 1, (82-102), (2017).
  • Measuring differences in economic standard of living between immigrant communities in Italy, Quality & Quantity, 10.1007/s11135-017-0542-3, 52, 4, (1643-1667), (2017).
  • Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models, TEST, 10.1007/s11749-017-0545-3, 27, 2, (270-294), (2017).
  • Classification trees for poverty mapping, Computational Statistics & Data Analysis, 10.1016/j.csda.2017.05.009, 115, (53-66), (2017).
  • Clustering Information of Non-Sampled Area in Small Area Estimation of Poverty Indicators, IOP Conference Series: Earth and Environmental Science, 10.1088/1755-1315/58/1/012020, 58, (012020), (2017).
  • An unconstrained statistical matching algorithm for combining individual and household level geo-specific census and survey data, Computers, Environment and Urban Systems, 10.1016/j.compenvurbsys.2016.11.003, 63, (3-14), (2017).
  • Developing neural networks to investigate relationships between lighting quality and lighting glare indices, Energy Procedia, 10.1016/j.egypro.2017.07.406, 122, (799-804), (2017).
  • undefined, , 10.1063/1.4979442, (020026), (2017).
  • undefined, , 10.1063/1.4979426, (020010), (2017).
  • Local Geographies of Digital Inequality, SSRN Electronic Journal, 10.2139/ssrn.2910555, (2017).
  • Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain, Social Indicators Research, 10.1007/s11205-017-1678-1, (2017).
  • On Estimating the Poverty Gap and the Poverty Severity Indices With Auxiliary Information, Sociological Methods & Research, 10.1177/0049124115626178, 47, 3, (598-625), (2016).
  • The Spatial Fay-Herriot Model in Poverty Estimation, Folia Oeconomica Stetinensia, 10.1515/foli-2016-0034, 16, 2, (191-202), (2016).
  • Empirical Best Prediction Under Unit-Level Logit Mixed Models, Journal of Official Statistics, 10.1515/jos-2016-0034, 32, 3, (661-692), (2016).
  • Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates, Social Science Research, 10.1016/j.ssresearch.2015.12.006, 56, (108-116), (2016).
  • Robust Domain Estimation of Income‐based Inequality Indicators, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (171-186), (2016).
  • Impact of Sampling Designs in Small Area Estimation with Applications to Poverty Measurement, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (83-108), (2016).
  • Poverty Mapping for the Chilean Comunas, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (379-404), (2016).
  • Small Area Estimation Using Both Survey and Census Unit Record Data, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (325-348), (2016).
  • Empirical Bayes and Hierarchical Bayes Estimation of Poverty Measures for Small Areas, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (315-324), (2016).
  • Small Area Estimation for Lognormal Data, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (279-298), (2016).
  • Model‐based Direct Estimation of a Small Area Distribution Function, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (261-278), (2016).
  • Unit Level Spatio‐temporal Models, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (227-244), (2016).
  • Nonparametric Regression Methods for Small Area Estimation, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (187-204), (2016).
  • Introduction on Measuring Poverty at Local Level Using Small Area Estimation Methods, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (1-18), (2016).
  • Local Comparisons of Small Area Estimates of Poverty: An Application Within the Tuscany Region in Italy, Social Indicators Research, 10.1007/s11205-015-1193-1, 131, 1, (235-254), (2015).
  • Poverty Mapping Based on First‐Order Dominance with an Example from Mozambique, Journal of International Development, 10.1002/jid.3200, 28, 1, (3-21), (2015).
  • References, Small Area Estimation, 10.1002/9781118735855, (405-430), (2015).
  • Modelling Small Area at-Risk-of-Poverty Rates for the UK Using the World Bank Methodology and the EU-SILC, Applied Spatial Analysis and Policy, 10.1007/s12061-014-9132-0, 9, 1, (97-117), (2014).
  • Efficient Estimation of the Headcount Index, Social Indicators Research, 10.1007/s11205-014-0757-9, 123, 3, (713-732), (2014).
  • A multidimensional view on poverty in the European Union by partial order theory, Journal of Applied Statistics, 10.1080/02664763.2014.978269, 42, 3, (535-554), (2014).
  • Robust small area prediction for counts, Statistical Methods in Medical Research, 10.1177/0962280214520731, 24, 3, (373-395), (2014).
  • Assessing Inequality of Human Opportunities: A New Approach for Public Policy in Tunisia, Applied Research in Quality of Life, 10.1007/s11482-014-9315-5, 10, 2, (343-361), (2014).
  • M-Quantile Small Area Models for Measuring Poverty at a Local Level, Contributions to Sampling Statistics, 10.1007/978-3-319-05320-2_2, (19-33), (2014).
  • MC Simulation of SEBLUP with Spatial Linear Mixed Model for SAE, Applied Mechanics and Materials, 10.4028/www.scientific.net/AMM.685.618, 685, (618-622), (2014).
  • Equalities between OLSE, BLUE and BLUP in the linear model, Statistical Papers, 10.1007/s00362-013-0500-7, 55, 2, (543-561), (2013).
  • Small area estimation with spatio-temporal Fay–Herriot models, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.09.002, 58, (308-325), (2013).
  • Small Area-Statistik: Methoden und AnwendungenSmall area statistics: methods and applications, AStA Wirtschafts- und Sozialstatistisches Archiv, 10.1007/s11943-013-0126-1, 6, 3-4, (149-191), (2013).
  • Small Area Estimation of Poverty Indicators, Survey Data Collection and Integration, 10.1007/978-3-642-21308-3, (89-101), (2013).
  • Is There a Metropolitan Bias? The relationship between poverty and city size in a selection of developing countries, The World Bank Economic Review, 10.1093/wber/lhs007, 26, 3, (351-382), (2012).
  • Non-parametric bootstrap mean squared error estimation for -quantile estimators of small area averages, quantiles and poverty indicators, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.01.023, 56, 10, (2889-2902), (2012).
  • Poverty and inequality in European regions, Journal of Applied Statistics, 10.1080/02664763.2012.661705, 39, 7, (1557-1576), (2012).
  • MODEL‐BASED DIRECT ESTIMATION OF SMALL‐AREA DISTRIBUTIONS, Australian & New Zealand Journal of Statistics, 10.1111/j.1467-842X.2012.00658.x, 54, 1, (103-123), (2012).
  • District-level poverty estimation: a proposed method, Journal of Applied Statistics, 10.1080/02664763.2010.547568, 38, 10, (2327-2343), (2011).
  • Small area estimation, Encyclopedia of Environmetrics, 10.1002/9780470057339, (2001).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.