Small area estimation of poverty indicators
Abstract
enThe authors propose to estimate nonlinear small area population parameters by using the empirical Bayes (best) method, based on a nested error model. They focus on poverty indicators as particular nonlinear parameters of interest, but the proposed methodology is applicable to general nonlinear parameters. They use a parametric bootstrap method to estimate the mean squared error of the empirical best estimators. They also study small sample properties of these estimators by model‐based and design‐based simulation studies. Results show large reductions in mean squared error relative to direct area‐specific estimators and other estimators obtained by “simulated” censuses. The authors also apply the proposed method to estimate poverty incidences and poverty gaps in Spanish provinces by gender with mean squared errors estimated by the mentioned parametric bootstrap method. For the Spanish data, results show a significant reduction in coefficient of variation of the proposed empirical best estimators over direct estimators for practically all domains. The Canadian Journal of Statistics 38: 369–385; 2010 © 2010 Statistical Society of Canada
Abstract
frLes auteurs proposent d'estimer les paramètres non linéaires d'une population de petits domaines en utilisant une méthode bayésienne empirique. L'emphase est mise sur les indicateurs de pauvreté comme paramètres non linéaires d'intérêt particuliers, mais ils proposent une méthodologie qui s'applique à des paramètres non linéaires plus généraux. Ils utilisent une méthode de rééchantillonnage paramétrique pour estimer l'erreur quadratique moyenne du meilleur estimateur empirique. À l'aide de simulations basées sur le modèle et sur le plan de sondage, ils étudient les propriétés de ces estimateurs pour les petits échantillons. Les résultats obtenus montrent une grande réduction de l'erreur quadratique moyenne par rapport aux estimateurs propres aux régions et les autres estimateurs obtenus par recensements « simulés». Les auteurs ont aussi appliqué la méthodologie proposée à l'estimation des incidences de pauvreté et des disparités, en fonction du sexe, du niveau de la pauvreté des provinces espagnoles. Les erreurs quadratiques moyennes sont estimées en utilisant la méthode de rééchantillonnage paramétrique citée auparavant. Pour les données espagnoles, les résultats montrent une réduction substantielle du coefficient de variation des meilleurs estimateurs empiriques proposés par rapport aux estimateurs spécifiques pour pratiquement tous les domaines. La revue canadienne de statistique 38: 369–385; 2010 © 2010 Société statistique du Canada
Citing Literature
Number of times cited according to CrossRef: 81
- Sumonkanti Das, Bappi Kumar, Md. Zakir Hossain, Sabbir Tahmidur Rahman, Azizur Rahman, Estimation of Child Undernutrition at Disaggregated Administrative Tiers of a North-Eastern District of Bangladesh: An Application of Small Area Estimation Method, Statistics for Data Science and Policy Analysis, 10.1007/978-981-15-1735-8, (267-281), (2020).
- Enrico Fabrizi, Maria Rosaria Ferrante, Carlo Trivisano, A functional approach to small area estimation of the relative median poverty gap, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12562, 183, 3, (1273-1291), (2020).
- Jiming Jiang, J. Sunil Rao, Robust Small Area Estimation: An Overview, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-031219-041212, 7, 1, (337-360), (2020).
- Łukasz Wawrowski, Indirect estimation of poverty indicators at poviat level, Wiadomości Statystyczne. The Polish Statistician, 10.5604/01.3001.0014.3524, 65, 8, (7), (2020).
- Ralf Münnich, Qualität der regionalen Armutsmessung – vom Design zum Modell, Qualität bei zusammengeführten Daten, 10.1007/978-3-658-31009-7_2, (7-25), (2020).
- Sumonkanti Das, Bappi Kumar, Luthful Alahi Kawsar, Disaggregated level child morbidity in Bangladesh: An application of small area estimation method, PLOS ONE, 10.1371/journal.pone.0220164, 15, 5, (e0220164), (2020).
- Rebecca C. Steorts, Timo Schmid, Nikos Tzavidis, Smoothing and Benchmarking for Small Area Estimation, International Statistical Review, 10.1111/insr.12373, 0, 0, (2020).
- Maria Simona Andreano, Roberto Benedetti, Federica Piersimoni, Giovanni Savio, Mapping Poverty of Latin American and Caribbean Countries from Heaven Through Night-Light Satellite Images, Social Indicators Research, 10.1007/s11205-020-02267-1, (2020).
- Md. Jamal Hossain, Sumonkanti Das, Hukum Chandra, Mohammad Amirul Islam, Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data, PLOS ONE, 10.1371/journal.pone.0230906, 15, 4, (e0230906), (2020).
- Roberto Benavent, Domingo Morales, Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects, Statistical Methods & Applications, 10.1007/s10260-020-00521-x, (2020).
- Shonosuke Sugasawa, Yuki Kawakubo, Kota Ogasawara, Small area estimation with spatially varying natural exponential families, Journal of Statistical Computation and Simulation, 10.1080/00949655.2020.1714048, (1-18), (2020).
- Xiaodan Lyu, Emily J. Berg, Heike Hofmann, Empirical Bayes small area prediction under a zero‐inflated lognormal model with correlated random area effects, Biometrical Journal, 10.1002/bimj.202000029, 0, 0, (2020).
- Shonosuke Sugasawa, Tatsuya Kubokawa, Small area estimation with mixed models: a review, Japanese Journal of Statistics and Data Science, 10.1007/s42081-020-00076-x, (2020).
- Natalia Rojas‐Perilla, Sören Pannier, Timo Schmid, Nikos Tzavidis, Data‐driven transformations in small area estimation, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12488, 183, 1, (121-148), (2019).
- Paolo Frumento, Nicola Salvati, Parametric modelling of M‐quantile regression coefficient functions with application to small area estimation, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12495, 183, 1, (229-250), (2019).
- Yang Zhou, Yansui Liu, The geography of poverty: Review and research prospects, Journal of Rural Studies, 10.1016/j.jrurstud.2019.01.008, (2019).
- Shonosuke Sugasawa, Tatsuya Kubokawa, Adaptively transformed mixed‐model prediction of general finite‐population parameters, Scandinavian Journal of Statistics, 10.1111/sjos.12380, 46, 4, (1025-1046), (2019).
- Sumonkanti Das, Stephen Haslett, A Comparison of Methods for Poverty Estimation in Developing Countries, International Statistical Review, 10.1111/insr.12314, 87, 2, (368-392), (2019).
- Christoph Halbmeier, Ann-Kristin Kreutzmann, Timo Schmid, Carsten Schröder, The fayherriot command for estimating small-area indicators, The Stata Journal: Promoting communications on statistics and Stata, 10.1177/1536867X19874238, 19, 3, (626-644), (2019).
- Shonosuke Sugasawa, Small area estimation of general parameters: Bayesian transformed spatial prediction approach, Japanese Journal of Statistics and Data Science, 10.1007/s42081-019-00067-7, (2019).
- Adam Chwila, Tomasz Żądło, On properties of empirical best predictors, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2019.1649422, (1-34), (2019).
- Binod Manandhar, Balgobin Nandram, Hierarchical Bayesian models for continuous and positively skewed data from small areas, Communications in Statistics - Theory and Methods, 10.1080/03610926.2019.1645853, (1-19), (2019).
- Zhihuang Yang, Jiahua Chen, Small area mean estimation after effect clustering, Journal of Applied Statistics, 10.1080/02664763.2019.1648390, (1-22), (2019).
- Domingo Morales, Laureano Santamaría, Small area estimation under unit-level temporal linear mixed models, Journal of Statistical Computation and Simulation, 10.1080/00949655.2019.1590578, (1-29), (2019).
- Monique Graf, J. Miguel Marín, Isabel Molina, A generalized mixed model for skewed distributions applied to small area estimation, TEST, 10.1007/s11749-018-0594-2, 28, 2, (565-597), (2018).
- J. N. K. Rao, My Chancy Life as a Statistician, International Statistical Review, 10.1111/insr.12296, 87, S1, (S3-S9), (2018).
- Jiahua Chen, Yukun Liu, Small Area Quantile Estimation, International Statistical Review, 10.1111/insr.12293, 87, S1, (S219-S238), (2018).
- Mary E. Thompson, Combining Data from New and Traditional Sources in Population Surveys, International Statistical Review, 10.1111/insr.12292, 87, S1, (S79-S89), (2018).
- Bernard Baffour, Hukum Chandra, Arturo Martinez, Localised Estimates of Dynamics of Multi‐dimensional Disadvantage: An Application of the Small Area Estimation Technique Using Australian Survey and Census Data, International Statistical Review, 10.1111/insr.12270, 87, 1, (1-23), (2018).
- Nikos Tzavidis, Li‐Chun Zhang, Angela Luna, Timo Schmid, Natalia Rojas‐Perilla, From start to finish: a framework for the production of small area official statistics, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12364, 181, 4, (927-979), (2018).
- Stefano Marchetti, Maciej Beręsewicz, Nicola Salvati, Marcin Szymkowiak, Łukasz Wawrowski, The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12349, 181, 4, (1077-1104), (2018).
- María Guadarrama, Isabel Molina, J.N.K. Rao, Small area estimation of general parameters under complex sampling designs, Computational Statistics & Data Analysis, 10.1016/j.csda.2017.11.007, 121, (20-40), (2018).
- Mamadou S. Diallo, J. N. K. Rao, Small area estimation of complex parameters under unit‐level models with skew‐normal errors, Scandinavian Journal of Statistics, 10.1111/sjos.12336, 45, 4, (1092-1116), (2018).
- Gui Jin, Rao Fu, Zhihui Li, Feng Wu, Fan Zhang, CO2 emissions and poverty alleviation in China: An empirical study based on municipal panel data, Journal of Cleaner Production, 10.1016/j.jclepro.2018.08.221, 202, (883-891), (2018).
- Dian Handayani, Khairil Anwar Notodiputro, Asep Saefuddin, I Wayan Mangku, Anang Kurnia, Empirical Best Predictor for Nested Error Regression Small Area Models, IOP Conference Series: Earth and Environmental Science, 10.1088/1755-1315/187/1/012036, 187, (012036), (2018).
- Hukum Chandra, Kaustav Aditya, U. C. Sud, Localised estimates and spatial mapping of poverty incidence in the state of Bihar in India—An application of small area estimation techniques, PLOS ONE, 10.1371/journal.pone.0198502, 13, 6, (e0198502), (2018).
- Grant Blank, Mark Graham, Claudio Calvino, Local Geographies of Digital Inequality, Social Science Computer Review, 10.1177/0894439317693332, 36, 1, (82-102), (2017).
- Francesco Schirripa Spagnolo, Antonella D’Agostino, Nicola Salvati, Measuring differences in economic standard of living between immigrant communities in Italy, Quality & Quantity, 10.1007/s11135-017-0542-3, 52, 4, (1643-1667), (2017).
- Tomáš Hobza, Domingo Morales, Laureano Santamaría, Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models, TEST, 10.1007/s11749-017-0545-3, 27, 2, (270-294), (2017).
- Penny Bilton, Geoff Jones, Siva Ganesh, Steve Haslett, Classification trees for poverty mapping, Computational Statistics & Data Analysis, 10.1016/j.csda.2017.05.009, 115, (53-66), (2017).
- V Y Sundara, A Kurnia, K Sadik, Clustering Information of Non-Sampled Area in Small Area Estimation of Poverty Indicators, IOP Conference Series: Earth and Environmental Science, 10.1088/1755-1315/58/1/012020, 58, (012020), (2017).
- Mohammad-Reza Namazi-Rad, Robert Tanton, David Steel, Payam Mokhtarian, Sumonkanti Das, An unconstrained statistical matching algorithm for combining individual and household level geo-specific census and survey data, Computers, Environment and Urban Systems, 10.1016/j.compenvurbsys.2016.11.003, 63, (3-14), (2017).
- Saadi Mohamed Yacine, Zemmouri Noureddine, Barbara E.A. Piga, Eugenio Morello, Daich safa, Developing neural networks to investigate relationships between lighting quality and lighting glare indices, Energy Procedia, 10.1016/j.egypro.2017.07.406, 122, (799-804), (2017).
- Vinny Yuliani Sundara, Kusman Sadik, Anang Kurnia, undefined, , 10.1063/1.4979442, (020026), (2017).
- Agustin Siti Aminah, Gandhi Pawitan, Bertho Tantular, undefined, , 10.1063/1.4979426, (020010), (2017).
- Grant Blank, Mark Graham, Local Geographies of Digital Inequality, SSRN Electronic Journal, 10.2139/ssrn.2910555, (2017).
- Domingo Morales, María del Mar Rueda, Dolores Esteban, Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain, Social Indicators Research, 10.1007/s11205-017-1678-1, (2017).
- J. F. Muñoz, E. Álvarez-Verdejo, R. M. García-Fernández, On Estimating the Poverty Gap and the Poverty Severity Indices With Auxiliary Information, Sociological Methods & Research, 10.1177/0049124115626178, 47, 3, (598-625), (2016).
- Łukasz Wawrowski, The Spatial Fay-Herriot Model in Poverty Estimation, Folia Oeconomica Stetinensia, 10.1515/foli-2016-0034, 16, 2, (191-202), (2016).
- Tomáš Hobza, Domingo Morales, Empirical Best Prediction Under Unit-Level Logit Mixed Models, Journal of Official Statistics, 10.1515/jos-2016-0034, 32, 3, (661-692), (2016).
- Joanna Taylor, Graham Moon, Liz Twigg, Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates, Social Science Research, 10.1016/j.ssresearch.2015.12.006, 56, (108-116), (2016).
- Nikos Tzavidis, Stefano Marchetti, Robust Domain Estimation of Income‐based Inequality Indicators, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (171-186), (2016).
- Jan Pablo Burgard, Ralf Münnich, Thomas Zimmermann, Impact of Sampling Designs in Small Area Estimation with Applications to Poverty Measurement, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (83-108), (2016).
- Carolina Casas‐Cordero Valencia, Jenny Encina, Partha Lahiri, Poverty Mapping for the Chilean Comunas, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (379-404), (2016).
- Stephen J. Haslett, Small Area Estimation Using Both Survey and Census Unit Record Data, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (325-348), (2016).
- Jon N. K. Rao, Isabel Molina, Empirical Bayes and Hierarchical Bayes Estimation of Poverty Measures for Small Areas, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (315-324), (2016).
- Emily Berg, Hukum Chandra, Ray Chambers, Small Area Estimation for Lognormal Data, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (279-298), (2016).
- Hukum Chandra, Nicola Salvati, Ray Chambers, Model‐based Direct Estimation of a Small Area Distribution Function, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (261-278), (2016).
- Maria Chiara Pagliarella, Renato Salvatore, Unit Level Spatio‐temporal Models, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (227-244), (2016).
- M. Giovanna Ranalli, F. Jay Breidt, Jean D. Opsomer, Nonparametric Regression Methods for Small Area Estimation, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (187-204), (2016).
- Monica Pratesi, Nicola Salvati, Introduction on Measuring Poverty at Local Level Using Small Area Estimation Methods, Analysis of Poverty Data by Small Area Estimation, 10.1002/9781118814963, (1-18), (2016).
- Caterina Giusti, Lucio Masserini, Monica Pratesi, Local Comparisons of Small Area Estimates of Poverty: An Application Within the Tuscany Region in Italy, Social Indicators Research, 10.1007/s11205-015-1193-1, 131, 1, (235-254), (2015).
- Channing Arndt, Azhar M. Hussain, Vincenzo Salvucci, Finn Tarp, Lars Peter Østerdal, Poverty Mapping Based on First‐Order Dominance with an Example from Mozambique, Journal of International Development, 10.1002/jid.3200, 28, 1, (3-21), (2015).
- J.N.K. Rao, Isabel Molina, References, Small Area Estimation, 10.1002/9781118735855, (405-430), (2015).
- Patricia C. Melo, Andrew Copus, Mike Coombes, Modelling Small Area at-Risk-of-Poverty Rates for the UK Using the World Bank Methodology and the EU-SILC, Applied Spatial Analysis and Policy, 10.1007/s12061-014-9132-0, 9, 1, (97-117), (2014).
- J. F. Muñoz, E. Álvarez-Verdejo, R. M. García-Fernández, L. J. Barroso, Efficient Estimation of the Headcount Index, Social Indicators Research, 10.1007/s11205-014-0757-9, 123, 3, (713-732), (2014).
- Paola Annoni, Rainer Bruggemann, Lars Carlsen, A multidimensional view on poverty in the European Union by partial order theory, Journal of Applied Statistics, 10.1080/02664763.2014.978269, 42, 3, (535-554), (2014).
- Nikos Tzavidis, M Giovanna Ranalli, Nicola Salvati, Emanuela Dreassi, Ray Chambers, Robust small area prediction for counts, Statistical Methods in Medical Research, 10.1177/0962280214520731, 24, 3, (373-395), (2014).
- Hatem Jemmali, Mohamed Amara, Assessing Inequality of Human Opportunities: A New Approach for Public Policy in Tunisia, Applied Research in Quality of Life, 10.1007/s11482-014-9315-5, 10, 2, (343-361), (2014).
- Monica Pratesi, M-Quantile Small Area Models for Measuring Poverty at a Local Level, Contributions to Sampling Statistics, 10.1007/978-3-319-05320-2_2, (19-33), (2014).
- Yan Yu Liu, Ming Zhong Jin, De You Xie, Min Qing Gong, MC Simulation of SEBLUP with Spatial Linear Mixed Model for SAE, Applied Mechanics and Materials, 10.4028/www.scientific.net/AMM.685.618, 685, (618-622), (2014).
- Stephen J. Haslett, Jarkko Isotalo, Yonghui Liu, Simo Puntanen, Equalities between OLSE, BLUE and BLUP in the linear model, Statistical Papers, 10.1007/s00362-013-0500-7, 55, 2, (543-561), (2013).
- Yolanda Marhuenda, Isabel Molina, Domingo Morales, Small area estimation with spatio-temporal Fay–Herriot models, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.09.002, 58, (308-325), (2013).
- Ralf Münnich, Jan Pablo Burgard, Martin Vogt, Small Area-Statistik: Methoden und AnwendungenSmall area statistics: methods and applications, AStA Wirtschafts- und Sozialstatistisches Archiv, 10.1007/s11943-013-0126-1, 6, 3-4, (149-191), (2013).
- Monica Pratesi, Caterina Giusti, Stefano Marchetti, Small Area Estimation of Poverty Indicators, Survey Data Collection and Integration, 10.1007/978-3-642-21308-3, (89-101), (2013).
- Céline Ferré, Francisco H.G. Ferreira, Peter Lanjouw, Is There a Metropolitan Bias? The relationship between poverty and city size in a selection of developing countries, The World Bank Economic Review, 10.1093/wber/lhs007, 26, 3, (351-382), (2012).
- Stefano Marchetti, Nikos Tzavidis, Monica Pratesi, Non-parametric bootstrap mean squared error estimation for -quantile estimators of small area averages, quantiles and poverty indicators, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.01.023, 56, 10, (2889-2902), (2012).
- Nicholas T. Longford, Maria Grazia Pittau, Roberto Zelli, Riccardo Massari, Poverty and inequality in European regions, Journal of Applied Statistics, 10.1080/02664763.2012.661705, 39, 7, (1557-1576), (2012).
- Nicola Salvati, Hukum Chandra, Ray Chambers, MODEL‐BASED DIRECT ESTIMATION OF SMALL‐AREA DISTRIBUTIONS, Australian & New Zealand Journal of Statistics, 10.1111/j.1467-842X.2012.00658.x, 54, 1, (103-123), (2012).
- Dipankor Coondoo, Amita Majumder, Somnath Chattopadhyay, District-level poverty estimation: a proposed method, Journal of Applied Statistics, 10.1080/02664763.2010.547568, 38, 10, (2327-2343), (2011).
- Partha Lahiri, Small area estimation, Encyclopedia of Environmetrics, 10.1002/9780470057339, (2001).




