Volume 35, Issue 1
Article

A new family of random graphs for testing spatial segregation

Elvan Ceyhan

E-mail address: elceyhan@ku.edu.tr

Department of Mathematics Koç University, Sartiyer TR‐34450 Istanbul, Turkey

Search for more papers by this author
Carey E. Priebe

Department of Applied Mathematics and Statistics The Johns Hopkins University Baltimore, MD 21218, USA

Search for more papers by this author
David J. Marchette

E-mail address: cep@jhu.edu

Department of Applied Mathematics and Statistics The Johns Hopkins University Baltimore, MD 21218, USA

Search for more papers by this author
First published: 05 January 2010
Citations: 10

Abstract

en

The authors discuss a graph‐based approach for testing spatial point patterns. This approach falls under the category of data‐random graphs, which have been introduced and used for statistical pattern recognition in recent years. The authors address specifically the problem of testing complete spatial randomness against spatial patterns of segregation or association between two or more classes of points on the plane. To this end, they use a particular type of parameterized random digraph called a proximity catch digraph (PCD) which is based on relative positions of the data points from various classes. The statistic employed is the relative density of the PCD, which is a U‐statistic when scaled properly. The authors derive the limiting distribution of the relative density, using the standard asymptotic theory of U‐statistics. They evaluate the finite‐sample performance of their test statistic by Monte Carlo simulations and assess its asymptotic performance via Pitman's asymptotic efficiency, thereby yielding the optimal parameters for testing. They further stress that their methodology remains valid for data in higher dimensions.

Abstract

fr

Une nouvelle famille de graphes aléatoires utile pour tester la ségrégation spatiale

Les auteurs montrent comment on peut détecter des configurations de points dans l'espace à l'aide de graphes. Leur approche s'appuie sur la notion de graphe aléatoire observé, récemment introduite et utilisée en statistique pour la reconnaissance de formes. Les auteurs cherchent plus précisément à détecter la présence de ségrégation ou d'association entre deux ou plusieurs ensembles de points du plan en testant l'hypothèse d'absence complète de structure. Dans ce but, ils font appel à une classe paramétrique particulière de digraphes aléatoires appelés digraphes “à captation proximale” (DCP) qui tiennent compte de la disposition relative des éléments des diverses classes. Le test s'appuie sur la densité relative du DCP qui, une fois proprement normalisée, est une U‐statistique. Les auteurs en déterminent la loi limite en invoquant la théorie asymptotique des U‐statistiques. Ils en évaluent la performance à taille finie au moyen de simulations de Monte‐Carlo et en étudient aussi le comportement limite sous l'angle de l'efficacité asymptotique de Pitman, dont découlent des choix optimaux de paramètres aux fins de test. Ils soulignent de plus que leur méthodologie reste valide en dimensions supérieures.

Number of times cited according to CrossRef: 10

  • Classification using proximity catch digraphs, Machine Learning, 10.1007/s10994-020-05878-4, (2020).
  • Edge density of new graph types based on a random digraph family, Statistical Methodology, 10.1016/j.stamet.2016.07.003, 33, (31-54), (2016).
  • Comparison of relative density of two random geometric digraph families in testing spatial clustering, TEST, 10.1007/s11749-013-0344-4, 23, 1, (100-134), (2013).
  • The distribution of the relative arc density of a family of interval catch digraph based on uniform data, Metrika, 10.1007/s00184-011-0351-y, 75, 6, (761-793), (2011).
  • Spatial Clustering Tests Based on the Domination Number of a New Random Digraph Family, Communications in Statistics - Theory and Methods, 10.1080/03610921003597211, 40, 8, (1363-1395), (2011).
  • An Investigation of New Graph Invariants Related to the Domination Number of Random Proximity Catch Digraphs, Methodology and Computing in Applied Probability, 10.1007/s11009-010-9204-9, 14, 2, (299-334), (2010).
  • Extension of one-dimensional proximity regions to higher dimensions, Computational Geometry, 10.1016/j.comgeo.2010.05.002, 43, 9, (721-748), (2010).
  • Class cover catch digraphs, Wiley Interdisciplinary Reviews: Computational Statistics, 10.1002/wics.70, 2, 2, (171-177), (2010).
  • A CLT for a one-dimensional class cover problem, Statistics & Probability Letters, 10.1016/j.spl.2008.07.045, 79, 2, (223-233), (2009).
  • A general SLLN for the one-dimensional class cover problem, Statistics & Probability Letters, 10.1016/j.spl.2007.11.005, 78, 9, (1110-1118), (2008).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.