Volume 35, Issue 1
Article

Cramér‐von Mises statistics for discrete distributions with unknown parameters

Richard A. Lockhart

E-mail address: lockhart@stat.sfu.ca

Department of Statistics and Actuarial Science Simon Fraser University Burnaby, British Columbia Canada V5A 1S6

Search for more papers by this author
John J. Spinelli

E-mail address: jspinelli@bccrc.ca

British Columbia Cancer Research Centre Vancouver, British Columbia Canada V5Z 1L3

Search for more papers by this author
Michael A. Stephens

E-mail address: stephens@stat.sfu.ca

Department of Statistics and Actuarial Science Simon Fraser University Burnaby, British Columbia Canada V5A 1S6

Search for more papers by this author
First published: 05 January 2010
Citations: 11

Abstract

en

Choulakian, Lockhart & Stephens (1994) proposed Cramér‐von Mises statistics for testing fit to a fully specified discrete distribution. The authors give slightly modified definitions for these statistics and determine their asymptotic behaviour in the case when unknown parameters in the distribution must be estimated from the sample data. They also present two examples of applications.

Abstract

fr

Statistiques de Cramér‐von Mises pour des lois discrètes dont les paramètres sont inconnus

Choulakian, Lockhart & Stephens (1994) ont proposé des statistiques de Cramér‐von Mises permettant de tester l'adéquation d'une loi discrète complètement spécifiée. Les auteurs donnent des définitions légèrement modifiées de ces statistiques et en déterminent le comportement asymptotique dans le cas oú certains paramètres de la loi doivent être estimés à partir de données. Ils présentent en outre deux exemples d'application.

Number of times cited according to CrossRef: 11

  • undefined, 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 10.1109/VTC2020-Spring48590.2020.9129378, (1-5), (2020).
  • Goodness‐of‐fit tests for distributions estimated from complex survey data, Canadian Journal of Statistics, 10.1002/cjs.11501, 47, 3, (409-425), (2019).
  • Two‐sample homogeneity testing: A procedure based on comparing distributions of interpoint distances, Statistical Analysis and Data Mining: The ASA Data Science Journal, 10.1002/sam.11417, 12, 3, (234-252), (2019).
  • A Smooth Nonparametric, Multivariate, Mixed-Data Location-Scale Test, Journal of Business & Economic Statistics, 10.1080/07350015.2019.1574227, (1-12), (2019).
  • A Smooth Nonparametric, Multivariate, Mixed-Data Location-Scale Test, SSRN Electronic Journal, 10.2139/ssrn.3020789, (2017).
  • undefined, 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 10.1109/ANTS.2017.8384112, (1-6), (2017).
  • Assessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals, PLOS ONE, 10.1371/journal.pone.0151235, 11, 3, (e0151235), (2016).
  • On the Power Performance of Test Statistics for the Generalized Rayleigh Interval Grouped Data, Open Journal of Statistics, 10.4236/ojs.2015.55049, 05, 05, (474-482), (2015).
  • Empirical Distribution Function (EDF) Statistics, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (1-13), (2014).
  • Four tests of fit for the beta-binomial distribution, Journal of Applied Statistics, 10.1080/02664760903089664, 37, 9, (1547-1554), (2010).
  • Tests of Fit for the Logarithmic Distribution, Journal of Applied Mathematics and Decision Sciences, 10.1155/2008/463781, 2008, (1-8), (2008).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.