The accuracy of extrapolation (time series) methods: Results of a forecasting competition
Abstract
In the last few decades many methods have become available for forecasting. As always, when alternatives exist, choices need to be made so that an appropriate forecasting method can be selected and used for the specific situation being considered. This paper reports the results of a forecasting competition that provides information to facilitate such choice. Seven experts in each of the 24 methods forecasted up to 1001 series for six up to eighteen time horizons. The results of the competition are presented in this paper whose purpose is to provide empirical evidence about differences found to exist among the various extrapolative (time series) methods used in the competition.
Citing Literature
Number of times cited according to CrossRef: 812
- Tim Lauer, Rebecca Welsch, S. Ramlah Abbas, Michael Henke, Behavioral Analysis of Human-Machine Interaction in the Context of Demand Planning Decisions, Advances in Artificial Intelligence, Software and Systems Engineering, 10.1007/978-3-030-20454-9_13, (130-141), (2020).
- Selin Uzelaltinbulat, Vahid Nourani, Fahreddin Sadikoglu, Nazanin Behfar, Spatiotemporal Precipitation Modeling by AI Based Ensemble Approach, 10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-2019, 10.1007/978-3-030-35249-3_16, (127-136), (2020).
- Evangelos Spiliotis, Vassilios Assimakopoulos, Spyros Makridakis, Generalizing the Theta method for automatic forecasting, European Journal of Operational Research, 10.1016/j.ejor.2020.01.007, (2020).
- Paola Andrea Sánchez-Sánchez, José Rafael García-González, Leidy Haidy Perez Coronell, Encountered Problems of Time Series with Neural Networks: Models and Architectures, Recent Trends in Artificial Neural Networks - from Training to Prediction, 10.5772/intechopen.77409, (2020).
- Sajjad Taghiyeh, David C. Lengacher, Robert B. Handfield, Forecasting Model Selection Using Intermediate Classification: Application to MonarchFx Corporation, Expert Systems with Applications, 10.1016/j.eswa.2020.113371, (113371), (2020).
- Seunghye Lee, Hyunjoo Kim, Qui X. Lieu, Jaehong Lee, CNN-based image recognition for topology optimization, Knowledge-Based Systems, 10.1016/j.knosys.2020.105887, (105887), (2020).
- Michael N. Pavlenkov, Rinat Zh. Reimov, Forecasting Method of Product Shipment, Scientific and Technical Revolution: Yesterday, Today and Tomorrow, 10.1007/978-3-030-47945-9_63, (581-592), (2020).
- Hatice Oncel Cekim, Forecasting PM10 concentrations using time series models: a case of the most polluted cities in Turkey, Environmental Science and Pollution Research, 10.1007/s11356-020-08164-x, 27, 20, (25612-25624), (2020).
- Jasir Mushtaq, Abdul Qayoom Dar, Naved Ahsan, Spatial–temporal variations and forecasting analysis of municipal solid waste in the mountainous city of north-western Himalayas, SN Applied Sciences, 10.1007/s42452-020-2975-x, 2, 7, (2020).
- Erick Meira, Fernando Luiz Cyrino Oliveira, Jooyoung Jeon, Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals, International Journal of Forecasting, 10.1016/j.ijforecast.2020.07.005, (2020).
- Mahdi Abolghasemi, Jason Hurley, Ali Eshragh, Behnam Fahimnia, Demand forecasting in the presence of systematic events: Cases in capturing sales promotions, International Journal of Production Economics, 10.1016/j.ijpe.2020.107892, (107892), (2020).
- Patrick Kübler, Christoph H. Glock, Thomas Bauernhansl, A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses, Computers & Industrial Engineering, 10.1016/j.cie.2020.106645, 147, (106645), (2020).
- Devon Barrow, Nikolaos Kourentzes, Rickard Sandberg, Jacek Niklewski, Automatic robust estimation for exponential smoothing: perspectives from statistics and machine learning, Expert Systems with Applications, 10.1016/j.eswa.2020.113637, (113637), (2020).
- Adane Nega Tarekegn, Krzysztof Michalak, Mario Giacobini, Cross-Validation Approach to Evaluate Clustering Algorithms: An Experimental Study Using Multi-Label Datasets, SN Computer Science, 10.1007/s42979-020-00283-z, 1, 5, (2020).
- Tiemo Thiess, Oliver Müller, Designing Causal Inference Systems for Value-Based Spare Parts Pricing, Perspectives in Business Informatics Research, 10.1007/978-3-030-61140-8_13, (191-204), (2020).
- Ansel Renner, Juan José Cadillo-Benalcazar, Lorenzo Benini, Mario Giampietro, Environmental pressure of the European agricultural system: Anticipating the biophysical consequences of internalization, Ecosystem Services, 10.1016/j.ecoser.2020.101195, 46, (101195), (2020).
- Valeriy G. Narushin, Michael N. Romanov, Gang Lu, James Cugley, Darren K. Griffin, How oviform is the chicken egg? New mathematical insight into the old oomorphological problem, Food Control, 10.1016/j.foodcont.2020.107484, (107484), (2020).
- Craig Ellis, Patrick Wilson, Can a Neural Network Property Portfolio Selection Process Outperform the Property Market?, Journal of Real Estate Portfolio Management, 10.1080/10835547.2005.12089721, 11, 2, (105-121), (2020).
- John Paul Martin, A Kandasamy, K Chandrasekaran, Mobility aware autonomic approach for the migration of application modules in fog computing environment, Journal of Ambient Intelligence and Humanized Computing, 10.1007/s12652-020-01854-x, (2020).
- Fotios Petropoulos, Spyros Makridakis, Forecasting the novel coronavirus COVID-19, PLOS ONE, 10.1371/journal.pone.0231236, 15, 3, (e0231236), (2020).
- Jiaming Liu, Lina Ding, Xiaoyu Guan, Jiao Gui, Jianbin Xu, Comparative analysis of forecasting for air cargo volume: Statistical techniques vs. machine learning, Journal of Data, Information and Management, 10.1007/s42488-020-00031-1, (2020).
- Meilita Tryana Sembiring, Steven Chailes, undefined Sawaluddin, Decision Tree to Predict the Color Quality of Refined Bleached Deodorized Palm Oil (RBPO), IOP Conference Series: Materials Science and Engineering, 10.1088/1757-899X/851/1/012008, 851, (012008), (2020).
- Madhvi Rana, Susheel K. Mittal, Gufran Beig, Assessment and prediction of surface ozone in Northwest Indo-Gangetic Plains using ensemble approach, Environment, Development and Sustainability, 10.1007/s10668-020-00841-8, (2020).
- Ulrich Gunter, Irem Önder, Egon Smeral, Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?, Forecasting, 10.3390/forecast2030012, 2, 3, (211-229), (2020).
- Beyza Cetin, Idil Yavuz, Comparison of forecast accuracy of Ata and exponential smoothing , Journal of Applied Statistics, 10.1080/02664763.2020.1803813, (1-11), (2020).
- Vitor Cerqueira, Luis Torgo, Igor Mozetič, Evaluating time series forecasting models: an empirical study on performance estimation methods, Machine Learning, 10.1007/s10994-020-05910-7, (2020).
- Jan Alexander Fischer, Philipp Pohl, Dietmar Ratz, A machine learning approach to univariate time series forecasting of quarterly earnings, Review of Quantitative Finance and Accounting, 10.1007/s11156-020-00871-3, (2020).
- Vahid Nourani, Nazanin Behfar, Selin Uzelaltinbulat, Fahreddin Sadikoglu, Spatiotemporal precipitation modeling by artificial intelligence-based ensemble approach, Environmental Earth Sciences, 10.1007/s12665-019-8755-5, 79, 1, (2019).
- Fotios Petropoulos, Xun Wang, Stephen M. Disney, The inventory performance of forecasting methods: Evidence from the M3 competition data, International Journal of Forecasting, 10.1016/j.ijforecast.2018.01.004, 35, 1, (251-265), (2019).
- Tonya Boone, John E. Boylan, Robert Fildes, Ram Ganeshan, Nada Sanders, Perspectives on supply chain forecasting, International Journal of Forecasting, 10.1016/j.ijforecast.2018.11.002, 35, 1, (121-127), (2019).
- Meysam Arvan, Behnam Fahimnia, Mohsen Reisi, Enno Siemsen, Integrating human judgement into quantitative forecasting methods: A review, Omega, 10.1016/j.omega.2018.07.012, 86, (237-252), (2019).
- Francisco J. Díaz-Borrego, María del Mar Miras-Rodríguez, Bernabé Escobar-Pérez, Looking for Accurate Forecasting of Copper TC/RC Benchmark Levels, Complexity, 10.1155/2019/8523748, 2019, (1-16), (2019).
- Elise K. Jackson, Wade Roberts, Benjamin Nelsen, Gustavious P. Williams, E. James Nelson, Daniel P. Ames, Introductory overview: Error metrics for hydrologic modelling – A review of common practices and an open source library to facilitate use and adoption, Environmental Modelling & Software, 10.1016/j.envsoft.2019.05.001, (2019).
- Chao Wang, Xinyi Zhang, Minggang Wang, Ming K. Lim, Pezhman Ghadimi, Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques, Resources Policy, 10.1016/j.resourpol.2019.101414, 63, (101414), (2019).
- Zahra Hajirahimi, Mehdi Khashei, Weighted sequential hybrid approaches for time series forecasting, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2019.121717, (121717), (2019).
- Juliana C. Silva, Manuel C. Figueiredo, Ana C. Braga, Demand Forecasting: A Case Study in the Food Industry, Computational Science and Its Applications – ICCSA 2019, 10.1007/978-3-030-24302-9_5, (50-63), (2019).
- Juan Qiu, Qingfeng Du, Wei Wang, Kanglin Yin, Liang Chen, undefined, 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), 10.1109/COMPSAC.2019.10228, (330-335), (2019).
- Eralda Gjika, Aurora Ferrja, Arbesa Kamberi, A Study on the Efficiency of Hybrid Models in Forecasting Precipitations and Water Inflow Albania Case Study, Advances in Science, Technology and Engineering Systems Journal, 10.25046/aj040129, 4, 1, (2019).
- Arunachalam Narayanan, Funda Sahin, E. Powell Robinson, Demand and order‐fulfillment planning: The impact of point‐of‐sale data, retailer orders and distribution center orders on forecast accuracy, Journal of Operations Management, 10.1002/joom.1026, 65, 5, (468-486), (2019).
- Daniel Williams, Thad Calabrese, Current Midyear Municipal Budget Forecast Accuracy, The Palgrave Handbook of Government Budget Forecasting, 10.1007/978-3-030-18195-6_13, (257-272), (2019).
- Kasun Bandara, Christoph Bergmeir, Slawek Smyl, Forecasting Across Time Series Databases using Recurrent Neural Networks on Groups of Similar Series: A Clustering Approach, Expert Systems with Applications, 10.1016/j.eswa.2019.112896, (112896), (2019).
- Amir F. Atiya, Why does forecast combination work so well?, International Journal of Forecasting, 10.1016/j.ijforecast.2019.03.010, (2019).
- Evangelos Spiliotis, Andreas Kouloumos, Vassilios Assimakopoulos, Spyros Makridakis, Are forecasting competitions data representative of the reality?, International Journal of Forecasting, 10.1016/j.ijforecast.2018.12.007, (2019).
- Spyros Makridakis, Evangelos Spiliotis, Vassilios Assimakopoulos, Responses to discussions and commentaries, International Journal of Forecasting, 10.1016/j.ijforecast.2019.05.002, (2019).
- Fotios Petropoulos, Spyros Makridakis, The M4 competition: Bigger. Stronger. Better, International Journal of Forecasting, 10.1016/j.ijforecast.2019.05.005, (2019).
- Rob J. Hyndman, A brief history of forecasting competitions, International Journal of Forecasting, 10.1016/j.ijforecast.2019.03.015, (2019).
- Spyros Makridakis, Fotios Petropoulos, The M4 competition: Conclusions, International Journal of Forecasting, 10.1016/j.ijforecast.2019.05.006, (2019).
- Konstantinos Nikolopoulos, Dimitrios D. Thomakos, Ilias Katsagounos, Waleed Alghassab, On the M4.0 forecasting competition: Can you tell a 4.0 earthquake from a 3.0?, International Journal of Forecasting, 10.1016/j.ijforecast.2019.03.023, (2019).
- Spyros Makridakis, Evangelos Spiliotis, Vassilios Assimakopoulos, The M4 Competition: 100,000 time series and 61 forecasting methods, International Journal of Forecasting, 10.1016/j.ijforecast.2019.04.014, (2019).
- Srihari Jaganathan, P.K.S. Prakash, A combination-based forecasting method for the M4-competition, International Journal of Forecasting, 10.1016/j.ijforecast.2019.03.030, (2019).
- Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin Flunkert, Michael Bohlke-Schneider, Laurent Callot, Criteria for classifying forecasting methods, International Journal of Forecasting, 10.1016/j.ijforecast.2019.05.008, (2019).
- Spyros Makridakis, Rob J. Hyndman, Fotios Petropoulos, Forecasting in social settings: The state of the art, International Journal of Forecasting, 10.1016/j.ijforecast.2019.05.011, (2019).
- Sinta Berliana Sipayung, Indah Susanti, Edy Maryadi, Amalia Nurlatifah, Bambang Siswanto, Muhammad Nafayest, Fanny Aditya Putri, Eddy Hermawan, Analysis of Drought Potential in Sumba Island until 2040 Caused by Climate Change, Journal of Physics: Conference Series, 10.1088/1742-6596/1373/1/012004, 1373, (012004), (2019).
- Tam T. Truong, Seunghye Lee, Jaehong Lee, An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams, Composite Structures, 10.1016/j.compstruct.2019.111517, (111517), (2019).
- Vahid Nourani, Gozen Elkiran, Jazuli Abdullahi, Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements, Journal of Hydrology, 10.1016/j.jhydrol.2019.123958, (123958), (2019).
- Vahid Nourani, Gozen Elkiran, Jazuli Abdullahi, Multi-step ahead modeling of reference evapotranspiration using a multi-model approach, Journal of Hydrology, 10.1016/j.jhydrol.2019.124434, (124434), (2019).
- Sonali Shankar, P. Vigneswara Ilavarasan, Sushil Punia, Surya Prakash Singh, Forecasting container throughput with long short-term memory networks, Industrial Management & Data Systems, 10.1108/IMDS-07-2019-0370, ahead-of-print, ahead-of-print, (2019).
- S.D. Prestwich, Tuning Forecasting Algorithms for Black Swans, IFAC-PapersOnLine, 10.1016/j.ifacol.2019.11.411, 52, 13, (1496-1501), (2019).
- Nikolaos P. Bakas, Numerical Solution for the Extrapolation Problem of Analytic Functions, Research, 10.34133/2019/3903187, 2019, (1-10), (2019).
- Carole Turley Voulgaris, Crystal Balls and Black Boxes: What Makes a Good Forecast?, Journal of Planning Literature, 10.1177/0885412219838495, (088541221983849), (2019).
- Esteban Fernández-Vázquez, Blanca Moreno, Geoffrey J.D. Hewings, A Data-Weighted Prior Estimator for Forecast Combination, Entropy, 10.3390/e21040429, 21, 4, (429), (2019).
- Josef Arlt, Peter Trcka, Automatic SARIMA modeling and forecast accuracy, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2019.1618471, (1-22), (2019).
- S Ratnasari, undefined Yuniaristanto, R Zakaria, Demand Forecasting with Five Parameter Exponential Smoothing, IOP Conference Series: Materials Science and Engineering, 10.1088/1757-899X/495/1/012014, 495, (012014), (2019).
- A Nurlatifah, S B Sipayung, B Siswanto, Rainfall Scenario of West Nusa Tenggara in 2040 Based on CCAM RCP 4.5, IOP Conference Series: Earth and Environmental Science, 10.1088/1755-1315/303/1/012033, 303, (012033), (2019).
- A. S. Kulyasova, A. R. Esina, V. D. Svirchevskiy, Economic and mathematical modeling as an effective tool of the analysis of economic processes in industry, Russian Journal of Industrial Economics, 10.17073/2072-1633-2019-3-316-322, 12, 3, (316-322), (2019).
- Evangelos Spiliotis, Fotios Petropoulos, Vassilios Assimakopoulos, Improving the forecasting performance of temporal hierarchies, PLOS ONE, 10.1371/journal.pone.0223422, 14, 10, (e0223422), (2019).
- B. L. Kurilin, V. Y. Kisselevskaya-Babinina, N. A. Karasyov, I. V. Kisselevskaya-Babinina, E. V. Kislukhkina, V. A. Vasilyev, Selection of Prediction Method of Basic Statistical Work Parameters of N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Healthcare Department, Russian Sklifosovsky Journal "Emergency Medical Care", 10.23934/2223-9022-2019-8-3-246-256, 8, 3, (246-256), (2019).
- Jiří Šindelář, Sales forecasting in financial distribution: a comparison of quantitative forecasting methods, Journal of Financial Services Marketing, 10.1057/s41264-019-00068-3, (2019).
- Guckan Yapar, Hanife Taylan Selamlar, Sedat Capar, Idil Yavuz, ATA Method, Hacettepe Journal of Mathematics and Statistics, 10.15672/hujms.461032, (1-7), (2019).
- Vahid Nourani, Gozen Elkiran, Jazuli Abdullahi, Ala Tahsin, Multi-region Modeling of Daily Global Solar Radiation with Artificial Intelligence Ensemble, Natural Resources Research, 10.1007/s11053-018-09450-9, (2019).
- Serkan ARAS, Kripto Para Fiyatlarının Klasik ve Yapay Sinir Ağı Modelleri ile Tahmini, Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10.36543/kauiibfd.2019.026, 10, 20, (608-640), (2019).
- Sajjad Rahmanzadeh, Mir Saman Pishvaee, Mohammad Reza Rasouli, Integrated innovative product design and supply chain tactical planning within a blockchain platform, International Journal of Production Research, 10.1080/00207543.2019.1651947, (1-21), (2019).
- Sha Li, Daniel A. Griffith, Hong Shu, Temperature prediction based on a space–time regression-kriging model, Journal of Applied Statistics, 10.1080/02664763.2019.1671962, (1-23), (2019).
- Ivan Svetunkov, John E. Boylan, State-space ARIMA for supply-chain forecasting, International Journal of Production Research, 10.1080/00207543.2019.1600764, (1-10), (2019).
- Waddah Waheeb, Rozaida Ghazali, A novel error-output recurrent neural network model for time series forecasting, Neural Computing and Applications, 10.1007/s00521-019-04474-5, (2019).
- Ji Wu, Xian Cheng, Stephen Shaoyi Liao, Tourism forecast combination using the stochastic frontier analysis technique, Tourism Economics, 10.1177/1354816619868089, (135481661986808), (2019).
- Zoe Theocharis, Leonard A. Smith, Nigel Harvey, The influence of graphical format on judgmental forecasting accuracy: Lines versus points, FUTURES & FORESIGHT SCIENCE, 10.1002/ffo2.7, 1, 1, (2018).
- Qiwei Hu, John E. Boylan, Huijing Chen, Ashraf Labib, OR in spare parts management: A review, European Journal of Operational Research, 10.1016/j.ejor.2017.07.058, 266, 2, (395-414), (2018).
- Konstantinos Nikolopoulos, Fotios Petropoulos, Forecasting for big data: Does suboptimality matter?, Computers & Operations Research, 10.1016/j.cor.2017.05.007, 98, (322-329), (2018).
- Fotios Petropoulos, Rob J. Hyndman, Christoph Bergmeir, Exploring the sources of uncertainty: Why does bagging for time series forecasting work?, European Journal of Operational Research, 10.1016/j.ejor.2018.01.045, 268, 2, (545-554), (2018).
- Spyros Makridakis, Vassilios Assimakopoulos, Evangelos Spiliotis, Objectivity, reproducibility and replicability in forecasting research, International Journal of Forecasting, 10.1016/j.ijforecast.2018.05.001, 34, 4, (835-838), (2018).
- Spyros Makridakis, Evangelos Spiliotis, Vassilios Assimakopoulos, The M4 Competition: Results, findings, conclusion and way forward, International Journal of Forecasting, 10.1016/j.ijforecast.2018.06.001, 34, 4, (802-808), (2018).
- Ezgi Avci, Wolfgang Ketter, Eric van Heck, Managing electricity price modeling risk via ensemble forecasting: The case of Turkey, Energy Policy, 10.1016/j.enpol.2018.08.053, 123, (390-403), (2018).
- Dieu.T.T. Do, Dongkyu Lee, Jaehong Lee, Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems, Composites Part B: Engineering, 10.1016/j.compositesb.2018.09.087, (2018).
- Korkut Bekiroglu, Okan Duru, Emrah Gulay, Rong Su, Constantino Lagoa, Predictive analytics of crude oil prices by utilizing the intelligent model search engine, Applied Energy, 10.1016/j.apenergy.2018.07.071, 228, (2387-2397), (2018).
- Zahra Haji Rahimi, Mehdi Khashei, A least squares-based parallel hybridization of statistical and intelligent models for time series forecasting, Computers & Industrial Engineering, 10.1016/j.cie.2018.02.023, 118, (44-53), (2018).
- Eun-A Sim, Seunghye Lee, Jaehong Lee, Prediction of Static and Dynamic Behavior of Truss Structures Using Deep Learning, Journal of The korean Association For Spatial Structures, 10.9712/KASS.2018.18.4.69, 18, 4, (69-80), (2018).
- Ali Vaezi, Manish Verma, Railroad transportation of crude oil in Canada: Developing long-term forecasts, and evaluating the impact of proposed pipeline projects, Journal of Transport Geography, 10.1016/j.jtrangeo.2018.04.019, 69, (98-111), (2018).
- Razvan Stefanescu, Ramona Dumitriu, Introducere n Analiza Trendului, Partea a Patra (Introduction to Trend Analysis, Part 4), SSRN Electronic Journal, 10.2139/ssrn.3148768, (2018).
- Ruud H. Teunter, M. Zied Babai, Jos A.C. Bokhorst, Aris A. Syntetos, Revisiting the value of information sharing in two-stage supply chains, European Journal of Operational Research, 10.1016/j.ejor.2018.04.040, 270, 3, (1044-1052), (2018).
- Georg Peters, Richard Weber, dynXcube – Categorizing dynamic data analysis, Information Sciences, 10.1016/j.ins.2018.06.026, 463-464, (21-32), (2018).
- Salvatore Cannella, Roberto Dominguez, Borja Ponte, Jose M. Framinan, Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times, International Journal of Production Economics, 10.1016/j.ijpe.2018.08.008, 204, (264-277), (2018).
- Alexey Averkin, Sergey Yarushev, Hybrid Neural Networks for Time Series Forecasting, Artificial Intelligence, 10.1007/978-3-030-00617-4_21, (230-239), (2018).
- Jefferson Cavalcante, Joaquim Celestino Junior, Ahmed Patel, undefined, 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), 10.1109/AINA.2018.00038, (181-188), (2018).
- Lida Mercedes Barba Maggi, Lida Mercedes Barba Maggi, Times Series Analysis, Multiscale Forecasting Models, 10.1007/978-3-319-94992-5, (1-29), (2018).
- R M Salleh, N I Zawawi, Z F Gan, M E Nor, Autocorrelated process control: Geometric Brownian Motion approach versus Box-Jenkins approach, Journal of Physics: Conference Series, 10.1088/1742-6596/995/1/012039, 995, (012039), (2018).
- Nitin Singh, Saddam Hussain, Shailesh Tiwari, A PSO-Based ANN Model for Short-Term Electricity Price Forecasting, Ambient Communications and Computer Systems, 10.1007/978-981-10-7386-1_47, (553-563), (2018).
- Han Lin Shang, Steven Haberman, Model confidence sets and forecast combination: an application to age-specific mortality, Genus, 10.1186/s41118-018-0043-9, 74, 1, (2018).
- Niágara Rodrigues, Luciano Losekann, Getulio Silveira Filho, Demand of automotive fuels in Brazil: Underlying energy demand trend and asymmetric price response, Energy Economics, 10.1016/j.eneco.2018.07.005, 74, (644-655), (2018).
- John D. Levendis, Florian Schütz, Christof Sohn, Non-stationarity and ARIMA(p,d,q) Processes, Erste Hilfe bei Brustkrebs, 10.1007/978-3-319-98282-3_5, (101-122), (2018).
- See more




