Identifying interacting SNPs using Monte Carlo logic regression
Abstract
Interactions are frequently at the center of interest in single‐nucleotide polymorphism (SNP) association studies. When interacting SNPs are in the same gene or in genes that are close in sequence, such interactions may suggest which haplotypes are associated with a disease. Interactions between unrelated SNPs may suggest genetic pathways. Unfortunately, data sets are often still too small to definitively determine whether interactions between SNPs occur. Also, competing sets of interactions could often be of equal interest. Here we propose Monte Carlo logic regression, an exploratory tool that combines Markov chain Monte Carlo and logic regression, an adaptive regression methodology that attempts to construct predictors as Boolean combinations of binary covariates such as SNPs. The goal of Monte Carlo logic regression is to generate a collection of (interactions of) SNPs that may be associated with a disease outcome, and that warrant further investigation. As such, the models that are fitted in the Markov chain are not combined into a single model, as is often done in Bayesian model averaging procedures. Instead, the most frequently occurring patterns in these models are tabulated. The method is applied to a study of heart disease with 779 participants and 89 SNPs. A simulation study is carried out to investigate the performance of the Monte Carlo logic regression approach. Genet. Epidemiol. 28:157–170, 2005. © 2004 Wiley‐Liss, Inc.
Citing Literature
Number of times cited according to CrossRef: 138
- Claudio M. Rocco, Elvis Hernandez-Perdomo, Johnathan Mun, Application of logic regression to assess the importance of interactions between components in a network, Reliability Engineering & System Safety, 10.1016/j.ress.2020.107235, 205, (107235), (2021).
- Junxian Geng, Elizabeth H. Slate, Discovery Among Binary Biomarkers in Heterogeneous Populations, Statistical Modeling in Biomedical Research, 10.1007/978-3-030-33416-1_11, (213-232), (2020).
- Xiangdong Zhou, Keith C. C. Chan, Zhihua Huang, Jingbin Wang, Determining dependency and redundancy for identifying gene-gene interaction associated with complex disease, Journal of Bioinformatics and Computational Biology, 10.1142/S0219720020500353, (2020).
- Li-Yeh Chuang, Yu-Da Lin, Cheng-Hong Yang, Improved Classification Method for Detecting Potential Interactions Between Genes, Intelligent Computing, 10.1007/978-3-030-01174-1_29, (394-403), (2019).
- Guanjie Chen, Ao Yuan, Tao Cai, Chuan‐Ming Li, Amy R. Bentley, Jie Zhou, Daniel N. Shriner, Adebowale A. Adeyemo, Charles N. Rotimi, Measuring gene–gene interaction using Kullback–Leibler divergence, Annals of Human Genetics, 10.1111/ahg.12324, 83, 6, (405-417), (2019).
- Dongjing Liu, Mengying Wang, Yuan Yuan, Holger Schwender, Hong Wang, Ping Wang, Zhibo Zhou, Jing Li, Tao Wu, Hongping Zhu, Terri H. Beaty, Gene–gene interaction among cell adhesion genes and risk of nonsyndromic cleft lip with or without cleft palate in Chinese case‐parent trios, Molecular Genetics & Genomic Medicine, 10.1002/mgg3.872, 7, 10, (2019).
- Daisuke Yoneoka, Cindy Im, Yutaka Yasui, Parallel repulsive logic regression with biological adjacency, Biostatistics, 10.1093/biostatistics/kxz011, (2019).
- Holly Janes, Marshall D. Brown, David V. Glidden, Kenneth H. Mayer, Susan P. Buchbinder, Vanessa M. McMahan, Mauro Schechter, Juan Guanira, Martin Casapia, Evaluating the impact of policies recommending PrEP to subpopulations of men and transgender women who have sex with men based on demographic and behavioral risk factors, PLOS ONE, 10.1371/journal.pone.0222183, 14, 9, (e0222183), (2019).
- Minh Pham, Feng Cheng, Kandethody Ramachandran, A Comparison Study of Algorithms to Detect Drug–Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches, Drug Safety, 10.1007/s40264-018-00792-0, (2019).
- Xia Jiang, Richard Neapolitan, Defining and Discovering Interactive Causes, Advances in Biomedical Informatics, 10.1007/978-3-319-67513-8_4, (53-78), (2018).
- Suneetha Uppu, Aneesh Krishna, A deep hybrid model to detect multi-locus interacting SNPs in the presence of noise, International Journal of Medical Informatics, 10.1016/j.ijmedinf.2018.09.003, 119, (134-151), (2018).
- Xiangdong Zhou, Keith C. C. Chan, Detecting gene-gene interactions for complex quantitative traits using generalized fuzzy classification, BMC Bioinformatics, 10.1186/s12859-018-2361-5, 19, 1, (2018).
- Zhongmeng Zhao, Jiali Huang, Mingzhe Xu, Ruoyu Liu, Siyu He, Xuanping Zhang, Jiayin Wang, undefined, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 10.1109/BIBM.2018.8621487, (2182-2189), (2018).
- M. Andrecut, On the inherent competition between valid and spurious inductive inferences in Boolean data, International Journal of Modern Physics C, 10.1142/S0129183117501467, 28, 12, (1750146), (2018).
- Yin Xia, Tianxi Cai, T. Tony Cai, Multiple Testing of Submatrices of a Precision Matrix With Applications to Identification of Between Pathway Interactions, Journal of the American Statistical Association, 10.1080/01621459.2016.1251930, 113, 521, (328-339), (2017).
- Sangseob Leem, Taesung Park, An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions, BMC Genomics, 10.1186/s12864-017-3496-x, 18, S2, (2017).
- Matthias W. Lorenz, Negin Ashtiani Abdi, Frank Scheckenbach, Anja Pflug, Alpaslan Bülbül, Alberico L. Catapano, Stefan Agewall, Marat Ezhov, Michiel L. Bots, Stefan Kiechl, Andreas Orth, Automatic identification of variables in epidemiological datasets using logic regression, BMC Medical Informatics and Decision Making, 10.1186/s12911-017-0429-1, 17, 1, (2017).
- Jason H. Moore, Peter C. Andrews, Randal S. Olson, Sarah E. Carlson, Curt R. Larock, Mario J. Bulhoes, James P. O’Connor, Ellen M. Greytak, Steven L. Armentrout, Grid-based stochastic search for hierarchical gene-gene interactions in population-based genetic studies of common human diseases, BioData Mining, 10.1186/s13040-017-0139-3, 10, 1, (2017).
- Süreyya Özöğür Akyüz, Gürkan Üstünkar, Gerhard Wilhelm Weber, Adapted Infinite Kernel Learning by Multi-Local Algorithm, International Journal of Pattern Recognition and Artificial Intelligence, 10.1142/S0218001416510046, 30, 04, (1651004), (2016).
- Xiu-Kai Cao, Zhao-Yang Zhan, Yong-Zhen Huang, Xian-Yong Lan, Chu-Zhao Lei, Xing-Lei Qi, Hong Chen, Variants and haplotypes within MEF2C gene influence stature of chinese native cattle including body dimensions and weight, Livestock Science, 10.1016/j.livsci.2016.01.008, 185, (106-109), (2016).
- Philip S. Boonstra, Bhramar Mukherjee, Stephen B. Gruber, Jaeil Ahn, Stephanie L. Schmit, Nilanjan Chatterjee, Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification, American Journal of Epidemiology, 10.1093/aje/kwv198, 183, 3, (237-247), (2016).
- Parvin Sarbakhsh, Yadollah Mehrabi, Jeanine J. Houwing-Duistermaat, Farid Zayeri, Maryam Sadat Daneshpour, Transition Logic Regression Method to Identify Interactions in Binary Longitudinal Data, Open Journal of Statistics, 10.4236/ojs.2016.63042, 06, 03, (469-481), (2016).
- Xiangdong Zhou, Keith C. C. Chan, undefined, 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 10.1109/CIBCB.2016.7758094, (1-6), (2016).
- Aicha Boutorh, Ahmed Guessoum, Complex diseases SNP selection and classification by hybrid Association Rule Mining and Artificial Neural Network—based Evolutionary Algorithms, Engineering Applications of Artificial Intelligence, 10.1016/j.engappai.2016.01.004, 51, (58-70), (2016).
- Florian Frommlet, Małgorzata Bogdan, David Ramsey, Florian Frommlet, Małgorzata Bogdan, David Ramsey, Statistical Analysis of GWAS, Phenotypes and Genotypes, 10.1007/978-1-4471-5310-8_5, (105-161), (2016).
- Theo A. Knijnenburg, Gunnar W. Klau, Francesco Iorio, Mathew J. Garnett, Ultan McDermott, Ilya Shmulevich, Lodewyk F. A. Wessels, Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy, Scientific Reports, 10.1038/srep36812, 6, 1, (2016).
- Zexian Zeng, Xia Jiang, Richard Neapolitan, Discovering causal interactions using Bayesian network scoring and information gain, BMC Bioinformatics, 10.1186/s12859-016-1084-8, 17, 1, (2016).
- Suneetha Uppu, Aneesh Krishna, Raj P. Gopalan, A Deep Learning Approach to Detect SNP Interactions, Journal of Software, 10.17706/jsw.11.10.965-975, 11, 10, (965-975), (2016).
- Xia Jiang, Richard E. Neapolitan, LEAP: Biomarker Inference Through Learning and Evaluating Association Patterns, Genetic Epidemiology, 10.1002/gepi.21889, 39, 3, (173-184), (2015).
- Ming-Hsi Wang, Jean-Paul Achkar, Gene–environment interactions in inflammatory bowel disease pathogenesis, Current Opinion in Gastroenterology, 10.1097/MOG.0000000000000188, 31, 4, (277-282), (2015).
- X. Jiang, R. E. Neapolitan, Evaluation of a two-stage framework for prediction using big genomic data, Briefings in Bioinformatics, 10.1093/bib/bbv010, 16, 6, (912-921), (2015).
- Yin Xia, Tianxi Cai, T. Tony Cai, Testing differential networks with applications to the detection of gene-gene interactions, Biometrika, 10.1093/biomet/asu074, 102, 2, (247-266), (2015).
- Xia Jiang, Jeremy Jao, Richard Neapolitan, Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring, PLOS ONE, 10.1371/journal.pone.0143247, 10, 12, (e0143247), (2015).
- Lingtao Su, Guixia Liu, Han Wang, Yuan Tian, Zhihui Zhou, Liang Han, Lun Yan, Research on Single Nucleotide Polymorphisms Interaction Detection from Network Perspective, PLOS ONE, 10.1371/journal.pone.0119146, 10, 3, (e0119146), (2015).
- P. Li, M. Guo, C. Wang, X. Liu, Q. Zou, An overview of SNP interactions in genome-wide association studies, Briefings in Functional Genomics, 10.1093/bfgp/elu036, 14, 2, (143-155), (2014).
- Suneetha Uppu, Aneesh Krishna, Raj P. Gopalan, undefined, 2014 IEEE International Conference on Bioinformatics and Bioengineering, 10.1109/BIBE.2014.29, (329-333), (2014).
- Can Altinigneli, Bettina Konten, Dan Rujescir, Christian Bohm, Claudia Plant, undefined, 2014 IEEE International Conference on Big Data (Big Data), 10.1109/BigData.2014.7004271, (539-548), (2014).
- Xia Jiang, Binghuang Cai, Diyang Xue, Xinghua Lu, Gregory F Cooper, Richard E Neapolitan, A comparative analysis of methods for predicting clinical outcomes using high-dimensional genomic datasets, Journal of the American Medical Informatics Association, 10.1136/amiajnl-2013-002358, 21, e2, (e312-e319), (2014).
- Yun Lu, Sridhar Hannenhalli, Tom Cappola, Mary Putt, An evaluation of Monte-Carlo logic and logicFS motivated by a study of the regulation of gene expression in heart failure, Journal of Applied Statistics, 10.1080/02664763.2014.898133, 41, 9, (1956-1975), (2014).
- Gökmen Zararsiz, Erdal Coşgun, Introduction to Statistical Methods for MicroRNA Analysis, miRNomics: MicroRNA Biology and Computational Analysis, 10.1007/978-1-62703-748-8_8, (129-155), (2014).
- Gábor Hullám, András Gézsi, András Millinghoffer, Péter Sárközy, Bence Bolgár, Sanjeev K. Srivastava, Zsuzsanna Pál, Edit I. Buzás, Péter Antal, Bayesian Systems-Based Genetic Association Analysis with Effect Strength Estimation and Omic Wide Interpretation: A Case Study in Rheumatoid Arthritis, Arthritis Research, 10.1007/978-1-4939-0404-4_14, (143-176), (2014).
- Masao Ueki, On the choice of degrees of freedom for testing gene–gene interactions, Statistics in Medicine, 10.1002/sim.6264, 33, 28, (4934-4948), (2014).
- Magdalena Malina, Katja Ickstadt, Holger Schwender, Martin Posch, Małgorzata Bogdan, Detection of epistatic effects with logic regression and a classical linear regression model, Statistical Applications in Genetics and Molecular Biology, 10.1515/sagmb-2013-0028, 13, 1, (2014).
- Sui-Pi Chen, Guan-Hua Huang, A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data, Statistical Applications in Genetics and Molecular Biology, 10.1515/sagmb-2012-0074, 13, 3, (2014).
- Kristine A Pattin, Jason H Moore, Role for protein–protein interaction databases in human genetics, Expert Review of Proteomics, 10.1586/epr.09.86, 6, 6, (647-659), (2014).
- Chuang Wu, Roni Rosenfeld, Gilles Clermont, Using Data-Driven Rules to Predict Mortality in Severe Community Acquired Pneumonia, PLoS ONE, 10.1371/journal.pone.0089053, 9, 4, (e89053), (2014).
- H. Gao, Y. Wu, J. Li, H. Li, J. Li, R. Yang, Forward LASSO analysis for high-order interactions in genome-wide association study, Briefings in Bioinformatics, 10.1093/bib/bbt037, 15, 4, (552-561), (2013).
- Luonan Chen, Yang Liu, Michael K. Ng, Xutao Li, Zhiping Liu, Construction and analysis of single nucleotide polymorphism–single nucleotide polymorphism interaction networks, IET Systems Biology, 10.1049/iet-syb.2012.0055, 7, 5, (170-181), (2013).
- Ke-Shiuan Lynn, Chen-Hua Lu, Han-Ying Yang, Wen-Lian Hsu, Wen-Harn Pan, Construction of gene clusters resembling genetic causal mechanisms for common complex disease with an application to young-onset hypertension, BMC Genomics, 10.1186/1471-2164-14-497, 14, 1, (497), (2013).
- Gaurav Kumar, Edmond J Breen, Shoba Ranganathan, Identification of ovarian cancer associated genes using an integrated approach in a Boolean framework, BMC Systems Biology, 10.1186/1752-0509-7-12, 7, 1, (12), (2013).
- Kristine A. Pattin, Jason H. Moore, Addressing the Challenges of Detecting Epistasis in Genome-Wide Association Studies of Common Human Diseases Using Biological Expert Knowledge, Bioinformatics, 10.4018/978-1-4666-3604-0, (725-744), (2013).
- Xuanping Zhang, Jiayin Wang, Aiyuan Yang, Chunxia Yan, Feng Zhu, Zhongmeng Zhao, Zhi Cao, Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression, BioMed Research International, 10.1155/2013/574735, 2013, (1-11), (2013).
- Wentian Li, Yaning Yang, Logistic Regression in Genomewide Association Analysis, Biological Knowledge Discovery Handbook, 10.1002/9781118617151, (477-500), (2013).
- Kyunga Kim, Min-Seok Kwon, Sohee Oh, Taesung Park, Identification of multiple gene-gene interactions for ordinal phenotypes, BMC Medical Genomics, 10.1186/1755-8794-6-S2-S9, 6, S2, (2013).
- Gabriel E. Hoffman, Benjamin A. Logsdon, Jason G. Mezey, PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data, PLoS Computational Biology, 10.1371/journal.pcbi.1003101, 9, 6, (e1003101), (2013).
- Ya-Zhou Wu, Huan Yang, Ling Zhang, Yan-Qi Zhang, Ling Liu, Dong Yi, Jia Cao, Application of Crossover Analysis-logistic Regression in the Assessment of Gene- environmental Interactions for Colorectal Cancer, Asian Pacific Journal of Cancer Prevention, 10.7314/APJCP.2012.13.5.2031, 13, 5, (2031-2037), (2012).
- Marylyn D. Ritchie, The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era, Human Genetics, 10.1007/s00439-012-1221-z, 131, 10, (1615-1626), (2012).
- P. Boffetta, D. M. Winn, J. P. Ioannidis, D. C. Thomas, J. Little, G. D. Smith, V. J. Cogliano, S. S. Hecht, D. Seminara, P. Vineis, M. J. Khoury, Recommendations and proposed guidelines for assessing the cumulative evidence on joint effects of genes and environments on cancer occurrence in humans, International Journal of Epidemiology, 10.1093/ije/dys010, 41, 3, (686-704), (2012).
- S A Ivanova, A J M Loonen, P Pechlivanoglou, M B Freidin, A F Y Al Hadithy, E V Rudikov, I A Zhukova, N V Govorin, V A Sorokina, O Y Fedorenko, V M Alifirova, A V Semke, J R B J Brouwers, B Wilffert, NMDA receptor genotypes associated with the vulnerability to develop dyskinesia, Translational Psychiatry, 10.1038/tp.2011.66, 2, 1, (e67-e67), (2012).
- Michael LeBlanc, Bryan Goldman, Charles Kooperberg, John Crowley, Antje Hoering, Methods for SNP Regression Analysis in Clinical Studies, Handbook of Statistics in Clinical Oncology, Third Edition, 10.1201/b11800, (591-604), (2012).
- Donghui Li, Eric J. Duell, Kai Yu, Harvey A. Risch, Sara H. Olson, Charles Kooperberg, Brian M. Wolpin, Li Jiao, Xiaoqun Dong, Bill Wheeler, Alan A. Arslan, H. Bas Bueno-de-Mesquita, Charles S. Fuchs, Steven Gallinger, Myron Gross, Patricia Hartge, Robert N. Hoover, Elizabeth A. Holly, Eric J. Jacobs, Alison P. Klein, Andrea LaCroix, Margaret T. Mandelson, Gloria Petersen, Wei Zheng, Ilir Agalliu, Demetrius Albanes, Marie-Christine Boutron-Ruault, Paige M. Bracci, Julie E. Buring, Federico Canzian, Kenneth Chang, Stephen J. Chanock, Michelle Cotterchio, J.Michael Gaziano, Edward L. Giovannucci, Michael Goggins, Göran Hallmans, Susan E. Hankinson, Judith A. Hoffman Bolton, David J. Hunter, Amy Hutchinson, Kevin B. Jacobs, Mazda Jenab, Kay-Tee Khaw, Peter Kraft, Vittorio Krogh, Robert C. Kurtz, Robert R. McWilliams, Julie B. Mendelsohn, Alpa V. Patel, Kari G. Rabe, Elio Riboli, Xiao-Ou Shu, Anne Tjønneland, Geoffrey S. Tobias, Dimitrios Trichopoulos, Jarmo Virtamo, Kala Visvanathan, Joanne Watters, Herbert Yu, Anne Zeleniuch-Jacquotte, Laufey Amundadottir, Rachael Z. Stolzenberg-Solomon, Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer, Carcinogenesis, 10.1093/carcin/bgs151, 33, 7, (1384-1390), (2012).
- Sara Raimondi, Sara Gandini, Maria Concetta Fargnoli, Vincenzo Bagnardi, Patrick Maisonneuve, Claudia Specchia, Rajiv Kumar, Eduardo Nagore, Jiali Han, Johan Hansson, Peter A Kanetsky, Paola Ghiorzo, Nelleke A Gruis, Terry Dwyer, Leigh Blizzard, Ricardo Fernandez-de-Misa, Wojciech Branicki, Tadeusz Debniak, Niels Morling, Maria Teresa Landi, Giuseppe Palmieri, Gloria Ribas, Alexander Stratigos, Lynn Cornelius, Tomonori Motokawa, Sumiko Anno, Per Helsing, Terence H Wong, Philippe Autier, José C García-Borrón, Julian Little, Julia Newton-Bishop, Francesco Sera, Fan Liu, Manfred Kayser, Tamar Nijsten, Melanocortin-1 receptor, skin cancer and phenotypic characteristics (M-SKIP) project: study design and methods for pooling results of genetic epidemiological studies, BMC Medical Research Methodology, 10.1186/1471-2288-12-116, 12, 1, (2012).
- Gang Zheng, Yaning Yang, Xiaofeng Zhu, Robert C. Elston, Gang Zheng, Yaning Yang, Xiaofeng Zhu, Robert C. Elston, Gene-Gene Interactions, Analysis of Genetic Association Studies, 10.1007/978-1-4614-2245-7_8, (235-256), (2012).
- Leah E. Mechanic, Huann‐Sheng Chen, Christopher I. Amos, Nilanjan Chatterjee, Nancy J. Cox, Rao L. Divi, Ruzong Fan, Emily L. Harris, Kevin Jacobs, Peter Kraft, Suzanne M. Leal, Kimberly McAllister, Jason H. Moore, Dina N. Paltoo, Michael A. Province, Erin M. Ramos, Marylyn D. Ritchie, Kathryn Roeder, Daniel J. Schaid, Matthew Stephens, Duncan C. Thomas, Clarice R. Weinberg, John S. Witte, Shunpu Zhang, Sebastian Zöllner, Eric J. Feuer, Elizabeth M. Gillanders, Next generation analytic tools for large scale genetic epidemiology studies of complex diseases, Genetic Epidemiology, 10.1002/gepi.20652, 36, 1, (22-35), (2011).
- K. Van Steen, Travelling the world of gene-gene interactions, Briefings in Bioinformatics, 10.1093/bib/bbr012, 13, 1, (1-19), (2011).
- Yan Liu, Andrea S. Foulkes, Latent variable modeling paradigms for genotype‐trait association studies, Biometrical Journal, 10.1002/bimj.201000218, 53, 5, (838-854), (2011).
- Kristine A. Pattin, Jason H. Moore, Addressing the Challenges of Detecting Epistasis in Genome-Wide Association Studies of Common Human Diseases Using Biological Expert Knowledge, Handbook of Research on Computational and Systems Biology, 10.4018/978-1-60960-491-2, (128-147), (2011).
- Li Chen, Guoqiang Yu, Carl D Langefeld, David J Miller, Richard T Guy, Jayaram Raghuram, Xiguo Yuan, David M Herrington, Yue Wang, Comparative analysis of methods for detecting interacting loci, BMC Genomics, 10.1186/1471-2164-12-344, 12, 1, (2011).
- Daniel Shriner, Laura Kelly Vaughan, A unified framework for multi-locus association analysis of both common and rare variants, BMC Genomics, 10.1186/1471-2164-12-89, 12, 1, (2011).
- Sohee Oh, Jaehoon Lee, Min-Seok Kwon, Kyunga Kim, Taesung Park, undefined, 2011 IEEE International Conference on Bioinformatics and Biomedicine, 10.1109/BIBM.2011.103, (83-88), (2011).
- C. C. M. Chen, H. Schwender, J. Keith, R. Nunkesser, K. Mengersen, P. Macrossan, Methods for Identifying SNP Interactions: A Review on Variations of Logic Regression, Random Forest and Bayesian Logistic Regression, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10.1109/TCBB.2011.46, 8, 6, (1580-1591), (2011).
- P Chanda, A Zhang, M Ramanathan, Modeling of environmental and genetic interactions with AMBROSIA, an information-theoretic model synthesis method, Heredity, 10.1038/hdy.2011.18, 107, 4, (320-327), (2011).
- Jiayin Wang, Jin Zhang, Yufeng Wu, undefined, 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), 10.1109/ICCABS.2011.5729874, (171-177), (2011).
- Andrea S. Foulkes, Kinman Au, R Statistical Tools for Gene Discovery, In Silico Tools for Gene Discovery, 10.1007/978-1-61779-176-5_5, (73-90), (2011).
- Holger Schwender, Katherine Bowers, M. Daniele Fallin, Ingo Ruczinski, Importance Measures for Epistatic Interactions in Case‐Parent Trios, Annals of Human Genetics, 10.1111/j.1469-1809.2010.00623.x, 75, 1, (122-132), (2010).
- H. Schwender, I. Ruczinski, K. Ickstadt, Testing SNPs and sets of SNPs for importance in association studies, Biostatistics, 10.1093/biostatistics/kxq042, 12, 1, (18-32), (2010).
- Gary K. Chen, Duncan C Thomas, Using biological knowledge to discover higher order interactions in genetic association studies, Genetic Epidemiology, 10.1002/gepi.20542, 34, 8, (863-878), (2010).
- Bethany J. Wolf, Elizabeth G. Hill, Elizabeth H. Slate, Logic Forest: an ensemble classifier for discovering logical combinations of binary markers, Bioinformatics, 10.1093/bioinformatics/btq354, 26, 17, (2183-2189), (2010).
- Kristin K. Nicodemus, Joseph H. Callicott, Rachel G. Higier, Augustin Luna, Devon C. Nixon, Barbara K. Lipska, Radhakrishna Vakkalanka, Ina Giegling, Dan Rujescu, David St. Clair, Pierandrea Muglia, Yin Yao Shugart, Daniel R. Weinberger, Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging, Human Genetics, 10.1007/s00439-009-0782-y, 127, 4, (441-452), (2010).
- Kelly S. Benke, M. Daniele Fallin, Methods: Genetic Epidemiology, Clinics in Laboratory Medicine, 10.1016/j.cll.2010.07.002, 30, 4, (795-814), (2010).
- J. de Ridder, A. Gerrits, J. Bot, G. de Haan, M. Reinders, L. Wessels, Inferring combinatorial association logic networks in multimodal genome-wide screens, Bioinformatics, 10.1093/bioinformatics/btq211, 26, 12, (i149-i157), (2010).
- K.M. Prasad, M.E. Talkowski, K.V. Chowdari, L. McClain, R.H. Yolken, V.L. Nimgaonkar, Candidate genes and their interactions with other genetic/environmental risk factors in the etiology of schizophrenia, Brain Research Bulletin, 10.1016/j.brainresbull.2009.08.023, 83, 3-4, (86-92), (2010).
- Sang-Seob Leem, Kyu-Bum Wee, Prediction of SNP interactions in complex diseases with mutual information and boolean algebra, Journal of the Korea Society of Computer and Information, 10.9708/jksci.2010.15.11.215, 15, 11, (215-224), (2010).
- Yuri A. Saito, Nandita Mitra, Emeran A. Mayer, Genetic Approaches to Functional Gastrointestinal Disorders, Gastroenterology, 10.1053/j.gastro.2010.02.037, 138, 4, (1276-1285), (2010).
- Samsiddhi Bhattacharjee, Zhaoming Wang, Julia Ciampa, Peter Kraft, Stephen Chanock, Kai Yu, Nilanjan Chatterjee, Using Principal Components of Genetic Variation for Robust and Powerful Detection of Gene-Gene Interactions in Case-Control and Case-Only Studies, The American Journal of Human Genetics, 10.1016/j.ajhg.2010.01.026, 86, 3, (331-342), (2010).
- Peter Holmans, Statistical Methods for Pathway Analysis of Genome-Wide Data for Association with Complex Genetic Traits, Computational Methods for Genetics of Complex Traits, 10.1016/B978-0-12-380862-2.00007-2, (141-179), (2010).
- Rita M. Cantor, Kenneth Lange, Janet S. Sinsheimer, Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application, The American Journal of Human Genetics, 10.1016/j.ajhg.2009.11.017, 86, 1, (6-22), (2010).
- Patrick McNabb, Natalia Bochkina, Janusz Bialek, undefined, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 10.1109/ISGTEUROPE.2010.5638961, (1-8), (2010).
- J. H. Moore, F. W. Asselbergs, S. M. Williams, Bioinformatics challenges for genome-wide association studies, Bioinformatics, 10.1093/bioinformatics/btp713, 26, 4, (445-455), (2010).
- Kelly S. Benke, M. Daniele Fallin, Methods: Genetic Epidemiology, Psychiatric Clinics of North America, 10.1016/j.psc.2009.12.005, 33, 1, (15-34), (2010).
- Duncan Thomas, Methods for Investigating Gene-Environment Interactions in Candidate Pathway and Genome-Wide Association Studies, Annual Review of Public Health, 10.1146/annurev.publhealth.012809.103619, 31, 1, (21-36), (2010).
- M. Beekman, C. Nederstigt, H. E. D. Suchiman, D. Kremer, R. van der Breggen, N. Lakenberg, W. G. Alemayehu, A. J. M. de Craen, R. G. J. Westendorp, D. I. Boomsma, E. J. C. de Geus, J. J. Houwing-Duistermaat, B. T. Heijmans, P. E. Slagboom, Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity, Proceedings of the National Academy of Sciences, 10.1073/pnas.1003540107, 107, 42, (18046-18049), (2010).
- Holger Schwender, Ingo Ruczinski, Logic Regression and Its Extensions, Computational Methods for Genetics of Complex Traits, 10.1016/B978-0-12-380862-2.00002-3, (25-45), (2010).
- Benjamin A Goldstein, Alan E Hubbard, Adele Cutler, Lisa F Barcellos, An application of Random Forests to a genome-wide association dataset: Methodological considerations & new findings, BMC Genetics, 10.1186/1471-2156-11-49, 11, 1, (2010).
- Bing Han, Meeyoung Park, Xue-wen Chen, A Markov blanket-based method for detecting causal SNPs in GWAS, BMC Bioinformatics, 10.1186/1471-2105-11-S3-S5, 11, S3, (2010).
- Pekka Marttinen, Jukka Corander, Efficient Bayesian approach for multilocus association mapping including gene-gene interactions, BMC Bioinformatics, 10.1186/1471-2105-11-443, 11, 1, (2010).
- Qing Li, M. Daniele Fallin, Thomas A. Louis, Virginia K. Lasseter, John A. McGrath, Dimitri Avramopoulos, Paula S. Wolyniec, David Valle, Kung‐Yee Liang, Ann E. Pulver, Ingo Ruczinski, Detection of SNP‐SNP interactions in trios of parents with schizophrenic children, Genetic Epidemiology, 10.1002/gepi.20488, 34, 5, (396-406), (2010).
- James W. Baurley, David V. Conti, W. James Gauderman, Duncan C. Thomas, Discovery of complex pathways from observational data, Statistics in Medicine, 10.1002/sim.3962, 29, 19, (1998-2011), (2010).
- Xiang Wan, Can Yang, Qiang Yang, Hong Xue, Nelson L.S. Tang, Weichuan Yu, Predictive rule inference for epistatic interaction detection in genome-wide association studies, Bioinformatics, 10.1093/bioinformatics/btp622, 26, 1, (30-37), (2009).
- Jon Wakefield, Frank De Vocht,, Rayjean J. Hung, Bayesian mixture modeling of gene‐environment and gene‐gene interactions, Genetic Epidemiology, 10.1002/gepi.20429, 34, 1, (16-25), (2009).
- See more




