The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

Article

Warum Pentose‐ und nicht Hexose‐Nucleinsäuren??. Teil V*. (Purin‐Purin)‐Basenpaarung in der homo‐DNS‐Reihe: Guanin, Isoguanin, 2,6‐Diaminopurin und Xanthin

Katrin Groebke

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Vgl. die Promotionsarbeiten [9–12].Search for more papers by this author
Jürg Hunziker

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Vgl. die Promotionsarbeiten [9–12].Search for more papers by this author
William Fraser

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Postdoktorat ETH, 1989–91.Search for more papers by this author
Ling Peng

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Vgl. die Promotionsarbeiten [9–12].Search for more papers by this author
Ulf Diederichsen

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Vgl. die Promotionsarbeiten [9–12].Search for more papers by this author
Kaspar Zimmermann

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Postdoktorat ETH, 1989–92.Search for more papers by this author
Armin Holzner

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Postdoktorat ETH, 1992–93.Search for more papers by this author
Christian Leumann

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Search for more papers by this author
Albert Eschenmoser

Corresponding Author

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16. CH‐8092 Zürich
Search for more papers by this author
First published: 18 April 2005
Cited by: 59
*

Teile I‐IV der Reihe ‘Warum Pentose‐ und nicht Hexose‐Nucleinsäuren?’, vgl. [1–4]. Die vorliegende Arbeit gilt als 9. Mitteilung in der Reihe ‘Chemie von α‐Aminonitrilen’ 8. Mitteilung dieser Reihe vgl. [4]. Teile der hier publizierten Ergebnisse sind von J. H. an der Herbstversammlung der Schweizerischen Chemischen Gesellschaft in Bern am 16.10.1991 vorgetragen sowie in mehreren von A. E. gehaltenen und im Druck erschienenen Vorträgen erwähnt worden; vgl. [5–8].

Abstract

Why Pentose‐ and Not Hexose‐Nucleic Acids? Purine‐Purine Pairing in homo‐DNA: Guanine,Isoguanine, 2,6‐Diaminopurine, and Xanthine

This paper concludes the series of reports in this journal [1–4] on the chemistry of homo‐DNA, the constitutionally simplifie dmodel system of hexopyranosyl‐(6′ → 4′)‐oligonucleotide systems stidued in our laboratory as potentially natural‐nucleic‐acid alternatives in the context of a chemical aetiology of nucleic‐acid structure. The report describes the synthesis and pairing properties of homo‐DNA oligonucleotides which contain as nucleobases exclusively purines, and gives, together with part III of the series [3], a survey of what we know today about purine‐purine pairingin homo‐DNA. In addition, the paper discusses those aspects of the chemistry of homo‐DNA which, we think, influence the way how some of the structural features of DNA (and RNA) are to be interpreted on a qualitative level.

Purine‐purine pairing occurs in the homo‐DNA domain in great variety. Most prominent is a novel tridentate Watson‐Crick pair between guanine and isoguanine, as well as one between 2,6‐diaminopurine and xanthinone, both giving rise to very stable duplexes containing the all‐purine strands in antiparallel orientation. For the guanine‐isoguanine pair, constitutional assignment is based on temperature‐dependent UV and CD spectroscopy of various guanine‐ and isoguanine‐containg duplexes in comparison with duplexes known to be paired in the reverse guanine is replaced by 7‐carbauguanine. Isoguanine and 2,6‐diaminopurine also have the capability of self‐pariring in the reverse‐Hoogsteen mode, as previously observed for adenine and guanine [3]. In this type of pairing, the interchangeably. Fig. 36 provides an overall survey of the relative strength of pairing in all possible purine‐purine combinations.

Watson‐Crick pairing of isoguanine with guanine demands the former to participate in its 3H‐tautomeric form; hitherto this specific tautomer had not been considered in the pairing chemistry of isoguanine. Whereas (cumulative) purine‐purine pairing in DNA (reverse‐Hoogsten or Hoogsteen) seems to occur in triplexes and tetrapalexes only, its occurrence in duplexes in a characteristic feature of homo‐DNA chemistry. The occurrence of purine‐purine Watson‐Crick base pairs is probably a consequence of homo‐DNA's quasi‐linear ladder structure [1][4]. In a double helix, the distance between the two sugar C‐atoms, on which a base pair is anchored, is expected to be constrained by the dimensions of the helix; in a linear duplex, however, there would be no restrictions with regard to base‐pair length. Homo‐DNA's ladder‐like model also allows one to recognize one of the reasons why nucleic‐acid duplexes prefer to pair in antiparallel, rather than parallel strand orientation: in homo‐DNA duplexes, (averaged) backbone and base pair axes are strongly inclined toward one another [4]; the stronger this inclination, the higher the preference for antiparallel strand orientation is expected to be (Fig. 16).

In retrospect, homo‐DNA turns out to be one of the first artificial oligonucleotide systems (cf. Footnote 65) to demonstrate in a comprehensive way that informational base pairing involving purines and pyrimidines is not a capability unique to ribofuranosyl systems. Stability and helical shape of pairing complexes are not necessary conditions of one another; it is the potential for extensive conformational cooperativity of hte backbone structure with respect to the constellational demands of base pairing and base stacking that determines whether or nor a given type of base‐carrying backbone structure is an informational pairing system. From the viewpoint of the chemical aetiology of nucleic‐acid structure, which inspired our investigations on hexopyranosyl‐(6′ → 4′)‐oligonucleotide systems in the first place, the work on homo‐DNA is only an extensive model study, because homo‐DNA is not to be considered a potential natural‐nucleic‐acid altenratie. In retrospect, it seems fortunate that the model study was carried out, because without it we could hardly have comprehended the pairing behavior of the proper nucleic‐acid alternatives which we have studied later and which will be discussed in Part VI of this series.

The English footnotes to Fig. 1–49 provide an extension of this summary.

Number of times cited: 59

  • , Probing the Backbone Topology of DNA: Synthesis and Properties of 7′,5′‐Bicyclo‐DNA, Chemistry – A European Journal, 23, 33, (7953-7968), (2017).
  • , Formation of supramolecular assemblies and liquid crystals by purine nucleobases and cyanuric acid in water: implications for the possible origins of RNA, Physical Chemistry Chemical Physics, 10.1039/C6CP03047E, 18, 30, (20091-20096), (2016).
  • , Was a Pyrimidine‐Pyrimidine Base Pair the Ancestor of Watson‐Crick Base Pairs? Insights from a Systematic Approach to the Origin of RNA, Israel Journal of Chemistry, 55, 8, (891-905), (2015).
  • , Polymerase incorporation of a 2′-deoxynucleoside-5′-triphosphate bearing a 4-hydroxy-2-mercaptobenzimidazole nucleobase analogue, Bioorganic & Medicinal Chemistry Letters, 10.1016/j.bmcl.2015.05.075, 25, 15, (2888-2891), (2015).
  • , Synthesis of Nonnatural Oligonucleotides Made Exclusively of Alkynyl C‐Nucleosides with Nonnatural Bases, Current Protocols in Nucleic Acid Chemistry, 61, 1, (4.62.1-4.62.22), (2015).
  • , Controllable synthesis of nucleotide complex based on pH control: a small-molecule fluorescent probe as an auxiliary ligand to indicate the pre-organization of the nucleotide complex in solution, Dalton Trans., 10.1039/C5DT02624E, 44, 40, (17810-17818), (2015).
  • , l-ProT catalyzed highly regioselective N-alkoxyalkylation of purine rings with vinyl ethers, Chinese Chemical Letters, 10.1016/j.cclet.2014.04.023, 25, 10, (1341-1345), (2014).
  • , Watson–Crick versus imidazopyridopyrimidine base pairs: theoretical study on differences in stability and hydrogen bonding strength, Structural Chemistry, 10.1007/s11224-014-0397-3, 25, 4, (1271-1280), (2014).
  • , Künstliche genetische Systeme bestehend aus vergrößerten Basenpaaren, Angewandte Chemie, 125, 48, (12728-12739), (2013).
  • , Artificial Genetic Sets Composed of Size‐Expanded Base Pairs, Angewandte Chemie International Edition, 52, 48, (12498-12508), (2013).
  • , Computational investigation of thermochemical properties of non-natural C-nucloebases: different hydrogen-bonding preferences for non-natural Watson–Crick base pairs, Structural Chemistry, 10.1007/s11224-012-0115-y, 24, 4, (1015-1025), (2012).
  • , Molecular Engineering of Guanine-Rich Sequences: Z-DNA, DNA Triplexes, and G-Quadruplexes, Chemical Reviews, 10.1021/cr300225q, 113, 5, (3044-3083), (2013).
  • , The Origin of RNA and “My Grandfather’s Axe”, Chemistry & Biology, 20, 4, (466), (2013).
  • , Role of p K a of Nucleobases in the Origins of Chemical Evolution , Accounts of Chemical Research, 10.1021/ar200262x, 45, 12, (2035-2044), (2012).
  • , Ätiologie potentiell primordialer Biomolekül‐Strukturen: Vom Vitamin B12 zu den Nukleinsäuren und der Frage nach der Chemie der Entstehung des Lebens – ein Rückblick, Angewandte Chemie, 123, 52, (12618-12681), (2011).
  • , Etiology of Potentially Primordial Biomolecular Structures: From Vitamin B12 to the Nucleic Acids and an Inquiry into the Chemistry of Life’s Origin: A Retrospective, Angewandte Chemie International Edition, 50, 52, (12412-12472), (2011).
  • , Searching for Nucleic Acid Alternatives, Chemical Synthetic Biology, (5-45), (2011).
  • , Exotic DNAs Made of Nonnatural Bases and Natural Phosphodiester Bonds, Chemistry & Biodiversity, 7, 2, (259-282), (2010).
  • , Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world, Proceedings of the National Academy of Sciences, 10.1073/pnas.0914172107, 107, 12, (5288-5293), (2010).
  • , Oligonucleotides with Sugars Other Than Ribo‐ and 2′‐Deoxyribofuranose in the Backbone: the Solution Structures Determined by NMR in the Context of the ‘Etiology of Nucleic Acids’ Project of Albert Eschenmoser, Chemistry & Biodiversity, 7, 9, (2103-2128), (2010).
  • , Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligo‐dipeptides Tagged with Orotic Acid Derivatives as Recognition Elements, Angewandte Chemie, 121, 43, (8268-8272), (2009).
  • , Synthesis and Base Pairing Properties of 1′,5′‐Anhydro‐L‐Hexitol Nucleic Acids (L‐HNA), Chemistry � A European Journal, 15, 39, (10121-10131), (2009).
  • , Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligo‐dipeptides Tagged with Orotic Acid Derivatives as Recognition Elements, Angewandte Chemie International Edition, 48, 43, (8124-8128), (2009).
  • , An Alternative Nucleobase Code: Characterization of Purine–Purine DNA Double Helices Bearing Guanine–Isoguanine and Diaminopurine 7‐Deaza‐Xanthine Base Pairs, ChemBioChem, 9, 17, (2779-2783), (2008).
  • , Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides Tagged with 2,4‐Disubstituted 5‐Aminopyrimidines as Recognition Elements, Angewandte Chemie, 119, 14, (2530-2536), (2006).
  • , Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides Tagged with 2,4‐Disubstituted 5‐Aminopyrimidines as Recognition Elements, Angewandte Chemie International Edition, 46, 14, (2478-2484), (2006).
  • , Structure of the α‐Homo‐DNA:RNA Duplex and the Function of Twist and Slide To Catalogue Nucleic Acid Duplexes, Chemistry – A European Journal, 13, 1, (90-98), (2006).
  • , 7-Deaza-2′-Deoxyxanthosine: Nucleobase Protection and Base Pairing of Oligonucleotides, Nucleosides, Nucleotides and Nucleic Acids, 26, 6-7, (737), (2007).
  • , DNA Made of Purines Only, Chemistry & Biology, 10.1016/j.chembiol.2007.05.001, 14, 5, (467-469), (2007).
  • , The search for the chemistry of life's origin, Tetrahedron, 10.1016/j.tet.2007.10.012, 63, 52, (12821-12844), (2007).
  • , Backbone-base inclination as a fundamental determinant of nucleic acid self- and cross-pairing, Nucleic Acids Research, 35, 19, (6611), (2007).
  • , An Unusual Mode of DNA Duplex Association: Watson-Crick Interaction of All-Purine Deoxyribonucleic Acids, Chemistry & Biology, 10.1016/j.chembiol.2007.03.012, 14, 5, (525-531), (2007).
  • , Oligonucleotides Containing 7‐Deaza‐2′‐deoxyxanthosine: Synthesis, Base Protection, and Base‐Pair Stability, Helvetica Chimica Acta, 89, 11, (2794-2814), (2006).
  • , De Novo Asymmetric Synthesis of Homoadenosine via a Palladium-CatalyzedN-Glycosylation, Organic Letters, 8, 2, (293), (2006).
  • , pH-Independent triplex formation: hairpin DNA containing isoguanine or 9-deaza-9-propynylguanine in place of protonated cytosine, Organic & Biomolecular Chemistry, 4, 21, (3993), (2006).
  • , Assembly of the Complete Eight‐Base Artificial Genetic Helix, xDNA, and Its Interaction with the Natural Genetic System, Angewandte Chemie, 117, 20, (3178-3182), (2005).
  • , Tautomerism in 5,8‐Diaza‐7,9‐dicarbaguanine (‘Alloguanine’), Helvetica Chimica Acta, 88, 7, (1960-1968), (2005).
  • , Assembly of the Complete Eight‐Base Artificial Genetic Helix, xDNA, and Its Interaction with the Natural Genetic System, Angewandte Chemie International Edition, 44, 20, (3118-3122), (2005).
  • , , Angewandte Chemie, 116, 6, (684-716), (2004).
  • , A New DNA Analogue with Expanded Size and Scope, ChemBioChem, 5, 6, (765-767), (2004).
  • , Mannich-Type C-Nucleosidations in the 5,8-Diaza-7,9-dicarba-purine Family1, Organic Letters, 6, 21, (3691), (2004).
  • , G‐Quartets 40 Years Later: From 5′‐GMP to Molecular Biology and Supramolecular Chemistry, Angewandte Chemie International Edition, 43, 6, (668-698), (2004).
  • , Prebiotic Chemistry and the Origin of the RNA World, Critical Reviews in Biochemistry and Molecular Biology, 10.1080/10409230490460765, 39, 2, (99-123), (2010).
  • , Pentopyranosyl Oligonucleotide Systems. 9th Communication, Helvetica Chimica Acta, 86, 12, (4270-4363), (2003).
  • , Nucleobase Pairing in Expanded Watson-Crick-like Genetic Information Systems, Structure, 11, 12, (1485), (2003).
  • , Anab initioquantum chemical investigation of the error-coding model of nucleotide alphabet composition, Molecular Physics, 101, 17, (2755), (2003).
  • 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEMBS-03 Cancun, Mexico 17-21 Sept. 2003 Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439) IEEE , (2003). 0-7803-7789-3 The role of error-coding in shaping the nucleotide alphabet: nature's choice of A,U, C and G 3850 3853 , 10.1109/IEMBS.2003.1281003 http://ieeexplore.ieee.org/document/1281003/
  • , The α‐L‐Threofuranosyl‐(3′→2′)‐oligonucleotide System (‘TNA'): Synthesis and Pairing Properties, Helvetica Chimica Acta, 85, 12, (4111-4153), (2003).
  • , Cation-directed self-assembly of lipophilic nucleosides: the cation's central role in the structure and dynamics of a hydrogen-bonded assembly, Tetrahedron, 10.1016/S0040-4020(01)01101-2, 58, 4, (661-671), (2002).
  • , 8-AZA-7-DEAZAADENINE AND 7-DEAZAGUANINE: SYNTHESIS AND PROPERTIES OF NUCLEOSIDES AND OLIGONUCLEOTIDES WITH NUCLEOBASES LINKED AT POSITION-8, Nucleosides, Nucleotides and Nucleic Acids, 20, 4-7, (577), (2001).
  • , Probing Structure and Function with Alternative Nucleic Acids Bearing 2′,5′-Linked, Zwitterionic, and Isocytosine·Isoguanine Components, Methods, 23, 2, (141), (2001).
  • , Intercalation-Mediated Synthesis and Replication: A New Approach to the Origin of Life, Journal of Theoretical Biology, 205, 4, (543), (2000).
  • , Reaction of Carbohydrates and Pentacoordinate Oxaphosphorane and Their Biomimetic Mechanism, Phosphorus, Sulfur, and Silicon and the Related Elements, 167, 1, (93), (2000).
  • , 5‐Aza‐7‐deaza‐2′‐deoxyguanosine: Oligonucleotide Duplexes with Novel Base Pairs, Parallel Chain Orientation and Protonation Sites in the Core of a Double Helix, European Journal of Organic Chemistry, 1999, 2, (485-496), (1999).
  • , Die gegensätzliche Orientierung der Rückgratneigung in Pyranosyl‐RNA und homo‐DNA korreliert mit einer entsprechend gegensätzlichen Orientierung von Duplexeigenschaften, Angewandte Chemie, 111, 5, (715-718), (1999).
  • , Synthesis and hybridization properties of oligonucleotides containing 6-membered azasugar nucleotides, Bioorganic & Medicinal Chemistry Letters, 9, 24, (3407), (1999).
  • , β‐Homoalanyl‐PNA: A Special Case of β‐Peptides with β‐Sheet‐Like Backbone Conformation; Organization in Higher Ordered Structures, European Journal of Organic Chemistry, 1998, 5, (827-835), (1998).
  • , ChemInform Abstract: Why Pentose‐ and Not Hexose‐Nucleic Acids? Purine‐Purine Pairing in homo‐DNA: Guanine, Isoguanine, 2,6‐Diaminopurine, and Xanthine., ChemInform, 29, 23, (2010).
  • , A Survey of Recent Synthetic Applications of 2,3-Dideoxy-Hex-2-enopyranosides, Molecules, 10.3390/molecules20058357, 20, 5, (8357-8394), (2015).