A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology
Abstract
Parameters in a generalized extreme value (GEV) distribution are specified as a function of covariates using a conditional density network (CDN), which is a probabilistic extension of the multilayer perceptron neural network. If the covariate is time or is dependent on time, then the GEV‐CDN model can be used to perform nonlinear, nonstationary GEV analysis of hydrological or climatological time series. Owing to the flexibility of the neural network architecture, the model is capable of representing a wide range of nonstationary relationships. Model parameters are estimated by generalized maximum likelihood, an approach that is tailored to the estimation of GEV parameters from geophysical time series. Model complexity is identified using the Bayesian information criterion and the Akaike information criterion with small sample size correction. Monte Carlo simulations are used to validate GEV‐CDN performance on four simple synthetic problems. The model is then demonstrated on precipitation data from southern California, a series that exhibits nonstationarity due to interannual/interdecadal climatic variability. Copyright © 2009 Her Majesty the Queen in right of Canada. Published by John Wiley & Sons, Ltd.
Citing Literature
Number of times cited according to CrossRef: 66
- Rajesh R. Shrestha, Katrina E. Bennett, Daniel L. Peters, Daqing Yang, Hydrologic Extremes in Arctic Rivers and Regions: Historical Variability and Future Perspectives, Arctic Hydrology, Permafrost and Ecosystems, 10.1007/978-3-030-50930-9, (187-218), (2021).
- Carlos F. Gaitán, Machine learning applications for agricultural impacts under extreme events, Climate Extremes and Their Implications for Impact and Risk Assessment, 10.1016/B978-0-12-814895-2.00007-0, (119-138), (2020).
- Hanbeen Kim, Ju-Young Shin, Taereem Kim, Sunghun Kim, Jun-Haeng Heo, Regional Frequency Analysis of Extreme Precipitation Based on a Nonstationary Population Index Flood Method, Advances in Water Resources, 10.1016/j.advwatres.2020.103757, (103757), (2020).
- Qingyun Tian, Zhanling Li, Xueli Sun, Frequency analysis of precipitation extremes under a changing climate: a case study in Heihe River basin, China, Journal of Water and Climate Change, 10.2166/wcc.2020.170, (2020).
- Axel Bücher, Jona Lilienthal, Paul Kinsvater, Roland Fried, Penalized quasi-maximum likelihood estimation for extreme value models with application to flood frequency analysis, Extremes, 10.1007/s10687-020-00379-y, (2020).
- Evan Hajani, Climate change and its influence on design rainfall at-site in New South Wales State, Australia, Journal of Water and Climate Change, 10.2166/wcc.2020.018, (2020).
- Alejandro Ivan Aguirre-Salado, Carlos Arturo Aguirre-Salado, Ernesto Alvarado, Alicia Santiago-Santos, Guillermo Arturo Lancho-Romero, On the Smoothing of the Generalized Extreme Value Distribution Parameters Using Penalized Maximum Likelihood: A Case Study on UVB Radiation Maxima in the Mexico City Metropolitan Area, Mathematics, 10.3390/math8030329, 8, 3, (329), (2020).
- Ana Carolina Freitas Xavier, Anderson Paulo Rudke, Thais Fujita, Gabriel Constantino Blain, Marcos Vinicius Bueno Morais, Daniela Sanches Almeida, Sameh Adib Abou Rafee, Leila Droprinchinski Martins, Rodrigo Augusto Ferreira Souza, Edimilson Dias Freitas, Jorge Alberto Martins, Stationary and non‐stationary detection of extreme precipitation events and trends of average precipitation from 1980 to 2010 in the Paraná River basin, Brazil, International Journal of Climatology, 10.1002/joc.6265, 40, 2, (1197-1212), (2019).
- Suhasini Hazarika, Parashmoni Borah, Amit Prakash, The assessment of return probability of maximum ozone concentrations in an urban environment of Delhi: A Generalized Extreme Value analysis approach, Atmospheric Environment, 10.1016/j.atmosenv.2019.01.021, (2019).
- Lu Chen, Shenglian Guo, Lu Chen, Shenglian Guo, Introduction, Copulas and Its Application in Hydrology and Water Resources, 10.1007/978-981-13-0574-0_1, (1-11), (2019).
- Elisa Ragno, Amir AghaKouchak, Linyin Cheng, Mojtaba Sadegh, A Generalized Framework for Process-informed Nonstationary Extreme Value Analysis, Advances in Water Resources, 10.1016/j.advwatres.2019.06.007, (2019).
- Gwangsu Kim, Jong-June Jeon, Bayesian model for hydrological processes with jumping location and varying dispersion, Journal of Hydrology, 10.1016/j.jhydrol.2019.124087, (124087), (2019).
- Ana Carolina Freitas Xavier, Gabriel Constantino Blain, Marcos Vinicius Bueno de Morais, Graciela da Rocha Sobierajski, Selecting “the best” nonstationary Generalized Extreme Value (GEV) distribution: on the influence of different numbers of GEV-models, Bragantia, 10.1590/1678-4499.20180408, 78, 4, (606-621), (2019).
- Song Xinyi, Lu Fan, Wang Hao, Xiao Weihua, Zhu Kui, Penalized maximum likelihood estimators for the nonstationary Pearson type 3 distribution, Journal of Hydrology, 10.1016/j.jhydrol.2018.10.035, (2018).
- Fan Zhang, Ying Qiao, Zongxiang Lu, Extreme wind power forecast error analysis considering its application in day-ahead reserve capacity planning, IET Renewable Power Generation, 10.1049/iet-rpg.2018.5023, (2018).
- Wiesław Szulczewski, Wojciech Jakubowski, The Application of Mixture Distribution for the Estimation of Extreme Floods in Controlled Catchment Basins, Water Resources Management, 10.1007/s11269-018-2005-6, 32, 10, (3519-3534), (2018).
- Wentao Xu, Cong Jiang, Lei Yan, Lingqi Li, Shuonan Liu, An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis, Water Resources Management, 10.1007/s11269-017-1873-5, (2018).
- Qiang Zhang, Xihui Gu, Vijay P. Singh, Peijun Shi, Peng Sun, More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years, Hydrology and Earth System Sciences, 10.5194/hess-22-2637-2018, 22, 5, (2637-2653), (2018).
- Bechir Raggad, Stationary and Non-stationary Extreme Value Approaches for Modelling Extreme Temperature: the Case of Riyadh City, Saudi Arabia, Environmental Modeling & Assessment, 10.1007/s10666-017-9588-9, 23, 1, (99-116), (2017).
- Barbara A. Muhling, Carlos F. Gaitán, Charles A. Stock, Vincent S. Saba, Desiree Tommasi, Keith W. Dixon, Potential Salinity and Temperature Futures for the Chesapeake Bay Using a Statistical Downscaling Spatial Disaggregation Framework, Estuaries and Coasts, 10.1007/s12237-017-0280-8, 41, 2, (349-372), (2017).
- Kurt C. Solander, Katrina E. Bennett, Richard S. Middleton, Shifts in historical streamflow extremes in the Colorado River Basin, Journal of Hydrology: Regional Studies, 10.1016/j.ejrh.2017.05.004, 12, (363-377), (2017).
- Ali Razmi, Saeed Golian, Zahra Zahmatkesh, Non-Stationary Frequency Analysis of Extreme Water Level: Application of Annual Maximum Series and Peak-over Threshold Approaches, Water Resources Management, 10.1007/s11269-017-1619-4, 31, 7, (2065-2083), (2017).
- Qiang Zhang, Xihui Gu, Peijun Shi, Vijay P. Singh, Impact of tropical cyclones on flood risk in southeastern China: Spatial patterns, causes and implications, Global and Planetary Change, 10.1016/j.gloplacha.2017.02.004, 150, (81-93), (2017).
- Hanbeen Kim, Sooyoung Kim, Hongjoon Shin, Jun-Haeng Heo, Appropriate model selection methods for nonstationary generalized extreme value models, Journal of Hydrology, 10.1016/j.jhydrol.2017.02.005, 547, (557-574), (2017).
- Chanyoung Son, Taesam Lee, Hyun-han Kwon, Integrating nonstationary behaviors of typhoon and non-typhoon extreme rainfall events in East Asia, Scientific Reports, 10.1038/s41598-017-04629-1, 7, 1, (2017).
- Teklu T. Hailegeorgis, Knut Alfredsen, Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure, Journal of Hydrology, 10.1016/j.jhydrol.2016.11.037, 544, (290-305), (2017).
- Lei Yan, Lihua Xiong, Shenglian Guo, Chong-Yu Xu, Jun Xia, Tao Du, Comparison of four nonstationary hydrologic design methods for changing environment, Journal of Hydrology, 10.1016/j.jhydrol.2017.06.001, 551, (132-150), (2017).
- B. Nasri, T. Bouezmarni, A. St-Hilaire, T.B.M.J. Ouarda, Non-stationary hydrologic frequency analysis using B-spline quantile regression, Journal of Hydrology, 10.1016/j.jhydrol.2017.09.035, 554, (532-544), (2017).
- Myoung-Jin Um, Yeonjoo Kim, Momcilo Markus, Donald J. Wuebbles, Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities, Journal of Hydrology, 10.1016/j.jhydrol.2017.07.007, 552, (396-406), (2017).
- Bechir Raggad, Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985–2014, Theoretical and Applied Climatology, 10.1007/s00704-017-2155-0, (2017).
- Rajesh R. Shrestha, Alex J. Cannon, Markus A. Schnorbus, Francis W. Zwiers, Projecting future nonstationary extreme streamflow for the Fraser River, Canada, Climatic Change, 10.1007/s10584-017-2098-6, (2017).
- Alejandro Aguirre-Salado, Humberto Vaquera-Huerta, Carlos Aguirre-Salado, Silvia Reyes-Mora, Ana Olvera-Cervantes, Guillermo Lancho-Romero, Carlos Soubervielle-Montalvo, Developing a Hierarchical Model for the Spatial Analysis of PM10 Pollution Extremes in the Mexico City Metropolitan Area, International Journal of Environmental Research and Public Health, 10.3390/ijerph14070734, 14, 7, (734), (2017).
- Poulomi Ganguli, Paulin Coulibaly, Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?, Hydrology and Earth System Sciences, 10.5194/hess-21-6461-2017, 21, 12, (6461-6483), (2017).
- Lei Yan, Lihua Xiong, Dedi Liu, Tiesong Hu, Chong‐Yu Xu, Frequency analysis of nonstationary annual maximum flood series using the time‐varying two‐component mixture distributions, Hydrological Processes, 10.1002/hyp.10965, 31, 1, (69-89), (2016).
- Xihui Gu, Qiang Zhang, Vijay P. Singh, Mingzhong Xiao, Jinqiang Cheng, Nonstationarity-based evaluation of flood risk in the Pearl River basin: changing patterns, causes and implications, Hydrological Sciences Journal, 10.1080/02626667.2016.1183774, 62, 2, (246-258), (2016).
- Panagiota Galiatsatou, Christina Anagnostopoulou, Panayotis Prinos, Modeling nonstationary extreme wave heights in present and future climates of Greek Seas, Water Science and Engineering, 10.1016/j.wse.2016.03.001, 9, 1, (21-32), (2016).
- M. Egüen, C. Aguilar, S. Solari, M.A. Losada, Non-stationary rainfall and natural flows modeling at the watershed scale, Journal of Hydrology, 10.1016/j.jhydrol.2016.04.061, 538, (767-782), (2016).
- Bouchra Nasri, Yves Tramblay, Salaheddine El Adlouni, Elke Hertig, Taha B. M. J. Ouarda, Atmospheric Predictors for Annual Maximum Precipitation in North Africa, Journal of Applied Meteorology and Climatology, 10.1175/JAMC-D-14-0122.1, 55, 4, (1063-1076), (2016).
- Youcun Liu, Miaojie Lu, Xueli Huo, Yonghong Hao, Hongkai Gao, Yan Liu, Yonghui Fan, Yuhuan Cui, Francois Metivier, A Bayesian analysis of Generalized Pareto Distribution of runoff minima, Hydrological Processes, 10.1002/hyp.10606, 30, 3, (424-432), (2015).
- Si Chen, YaXing Li, JiYae Shin, TaeWoong Kim, Constructing confidence intervals of extreme rainfall quantiles using Bayesian, bootstrap, and profile likelihood approaches, Science China Technological Sciences, 10.1007/s11431-015-5951-8, 59, 4, (573-585), (2015).
- Alex J. Cannon, An intercomparison of regional and at-site rainfall extreme value analyses in southern British Columbia, Canada, Canadian Journal of Civil Engineering, 10.1139/cjce-2014-0361, 42, 2, (107-119), (2015).
- Olga Kaiser, Dimitri Igdalov, Illia Horenko, Statistical Regression Analysis of Threshold Excesses with Systematically Missing Covariates, Multiscale Modeling & Simulation, 10.1137/140972184, 13, 2, (594-613), (2015).
- K.E. Bennett, A.J. Cannon, L. Hinzman, Historical trends and extremes in boreal Alaska river basins, Journal of Hydrology, 10.1016/j.jhydrol.2015.04.065, 527, (590-607), (2015).
- Kun-xia Yu, Lars Gottschalk, Lihua Xiong, Zhanbin Li, Peng Li, Estimation of the annual runoff distribution from moments of climatic variables, Journal of Hydrology, 10.1016/j.jhydrol.2015.11.012, 531, (1081-1094), (2015).
- Alex J. Cannon, Stephen R. Sobie, Trevor Q. Murdock, Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?, Journal of Climate, 10.1175/JCLI-D-14-00754.1, 28, 17, (6938-6959), (2015).
- L. Vasiliades, P. Galiatsatou, A. Loukas, Nonstationary Frequency Analysis of Annual Maximum Rainfall Using Climate Covariates, Water Resources Management, 10.1007/s11269-014-0761-5, 29, 2, (339-358), (2014).
- Alexander Garcia-Aristizabal, Edoardo Bucchignani, Elisa Palazzi, Donatella D’Onofrio, Paolo Gasparini, Warner Marzocchi, Analysis of non-stationary climate-related extreme events considering climate change scenarios: an application for multi-hazard assessment in the Dar es Salaam region, Tanzania, Natural Hazards, 10.1007/s11069-014-1324-z, 75, 1, (289-320), (2014).
- Yonghong Hao, Xueli Huo, Qingyun Duan, Youcun Liu, Yonghui Fan, Yan Liu, Tian-Chyi Jim Yeh, A Bayesian analysis of nonstationary generalized extreme value distribution of annual spring discharge minima, Environmental Earth Sciences, 10.1007/s12665-014-3552-7, 73, 5, (2031-2045), (2014).
- Gabriel C. Blain, Monica C. Meschiatti, Using multi-parameters distributions to assess the probability of occurrence of extreme rainfall data, Revista Brasileira de Engenharia Agrícola e Ambiental, 10.1590/S1415-43662014000300010, 18, 3, (307-313), (2014).
- Gabriel C. Blain, Dry months in the agricultural region of Ribeirão Preto, state of São Paulo-Brazil: an study based on the extreme value theory, Engenharia Agrícola, 10.1590/S0100-69162014000500018, 34, 5, (992-1000), (2014).
- Jayantha Obeysekera, Jose D. Salas, Quantifying the Uncertainty of Design Floods under Nonstationary Conditions, Journal of Hydrologic Engineering, 10.1061/(ASCE)HE.1943-5584.0000931, 19, 7, (1438-1446), (2014).
- Gülay Onuşluel Gül, Ömer Levend Aşıkoğlu, Ali Gül, F. Gülçem Yaşoğlu, Ertuğrul Benzeden, Nonstationarity in Flood Time Series, Journal of Hydrologic Engineering, 10.1061/(ASCE)HE.1943-5584.0000923, 19, 7, (1349-1360), (2014).
- Olga Kaiser, Illia Horenko, On inference of statistical regression models for extreme events based on incomplete observation data, Communications in Applied Mathematics and Computational Science, 10.2140/camcos.2014.9.143, 9, 1, (143-174), (2014).
- D. Panagoulia, P. Economou, C. Caroni, Stationary and nonstationary generalized extreme value modelling of extreme precipitation over a mountainous area under climate change, Environmetrics, 10.1002/env.2252, 25, 1, (29-43), (2013).
- Yan Liu, Yonghong Hao, Yonghui Fan, Tongke Wang, Xueli Huo, Youcun Liu, Tian‐Chyi J. Yeh, A nonstationary extreme value distribution for analysing the cessation of karst spring discharge, Hydrological Processes, 10.1002/hyp.10013, 28, 20, (5251-5258), (2013).
- C.F. Gaitan, W.W. Hsieh, A.J. Cannon, P. Gachon, Evaluation of Linear and Non-Linear Downscaling Methods in Terms of Daily Variability and Climate Indices: Surface Temperature in Southern Ontario and Quebec, Canada, Atmosphere-Ocean, 10.1080/07055900.2013.857639, 52, 3, (211-221), (2013).
- Ji Yae Shin, Yei Jun Park, Tae-Woong Kim, Estimation of Future Design Rainfalls in Administrative Districts Using Nonstationary GEV Model, Journal of korean society of hazard mitigation, 10.9798/KOSHAM.2013.13.3.147, 13, 3, (147-156), (2013).
- Bouchra Nasri, Salaheddine El Adlouni, Taha B. M. J. Ouarda, Bayesian Estimation for GEV-B-Spline Model, Open Journal of Statistics, 10.4236/ojs.2013.32013, 03, 02, (118-128), (2013).
- Alex J. Cannon, Neural networks for probabilistic environmental prediction: Conditional Density Estimation Network Creation and Evaluation (CaDENCE) in R, Computers & Geosciences, 10.1016/j.cageo.2011.08.023, 41, (126-135), (2012).
- Ilmari Juutilainen, Satu Tamminen, Juha Röning, A Tutorial to Developing Statistical Models for Predicting Disqualification Probability, Computational Methods for Optimizing Manufacturing Technology, 10.4018/978-1-4666-0128-4.ch015, (368-399), (2012).
- T.B.M.J. Ouarda, S. El‐Adlouni, Bayesian Nonstationary Frequency Analysis of Hydrological Variables, JAWRA Journal of the American Water Resources Association, 10.1111/j.1752-1688.2011.00544.x, 47, 3, (496-505), (2011).
- Gabriel Constantino Blain, Cento e vinte anos de totais extremos de precipitação pluvial máxima diária em Campinas, Estado de São Paulo: análises estatísticas, Bragantia, 10.1590/S0006-87052011000300031, 70, 3, (722-728), (2011).
- Gabriel Constantino Blain, Modeling extreme minimum air temperature series under climate change conditions, Ciência Rural, 10.1590/S0103-84782011001100005, 41, 11, (1877-1883), (2011).
- Gabriel Constantino Blain, Incorporating climate trends in the stochastic modeling of extreme minimum air temperature series of Campinas, state of São Paulo, Brazil, Bragantia, 10.1590/S0006-87052011000400031, 70, 4, (952-957), (2011).
- Alex J. Cannon, GEVcdn: An R package for nonstationary extreme value analysis by generalized extreme value conditional density estimation network, Computers & Geosciences, 10.1016/j.cageo.2011.03.005, 37, 9, (1532-1533), (2011).
- Alex J. Cannon, Quantile regression neural networks: Implementation in R and application to precipitation downscaling, Computers & Geosciences, 10.1016/j.cageo.2010.07.005, 37, 9, (1277-1284), (2011).




