AN UPPER ASYMPTOTE FOR THE THREE‐PARAMETER LOGISTIC ITEM‐RESPONSE MODEL*
ABSTRACT
An upper‐asymptote parameter was added to the three‐parameter logistic item response model. This four‐parameter model was compared to the three‐parameter model on four data sets. The fourth parameter increased the likelihood in only two of the four sets. Ability estimates for the students were generally unchanged by the introduction of the fourth parameter.
Citing Literature
Number of times cited according to CrossRef: 35
- Yang Du, Justin L. Kern, The Four-Parameter Normal Ogive Model with Response Times, Quantitative Psychology, 10.1007/978-3-030-43469-4_5, (55-67), (2020).
- Boris Forthmann, Natalie Förster, Birgit Schütze, Karin Hebbecker, Janis Flessner, Martin T. Peters, Elmar Souvignier, How Much g Is in the Distractor? Re-Thinking Item-Analysis of Multiple-Choice Items, Journal of Intelligence, 10.3390/jintelligence8010011, 8, 1, (11), (2020).
- Rebecca W. Gelding, Peter M. C. Harrison, Sebastian Silas, Blake W. Johnson, William F. Thompson, Daniel Müllensiefen, An efficient and adaptive test of auditory mental imagery, Psychological Research, 10.1007/s00426-020-01322-3, (2020).
- Ebru DOĞRUÖZ, Çiğdem AKIN ARIKAN, 3 ve 4PL Madde Tepki Kuramı Modellerine Göre Farklı Yetenek Kestirim Yöntemlerinin Karşılaştırılması, Pamukkale University Journal of Education, 10.9779/pauefd.585774, (1-20), (2020).
- Sanjana Sandeep, Christian R. Shelton, Anja Pahor, Susanne M. Jaeggi, Aaron R. Seitz, Application of Machine Learning Models for Tracking Participant Skills in Cognitive Training, Frontiers in Psychology, 10.3389/fpsyg.2020.01532, 11, (2020).
- Tim Kaiser, Luis Oberrauch, Günther Seeber, Measuring economic competence of secondary school students in Germany, The Journal of Economic Education, 10.1080/00220485.2020.1804504, (1-16), (2020).
- Jiwei Zhang, Jing Lu, Hang Du, Zhaoyuan Zhang, Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model, Frontiers in Psychology, 10.3389/fpsyg.2020.02121, 11, (2020).
- Shaoyang Guo, Chanjin Zheng, The Bayesian Expectation-Maximization-Maximization for the 3PLM, Frontiers in Psychology, 10.3389/fpsyg.2019.01175, 10, (2019).
- Shiyu Wang, Georgios Fellouris, Hua-Hua Chang, Statistical Foundations for Computerized Adaptive Testing with Response Revision, Psychometrika, 10.1007/s11336-019-09662-9, (2019).
- Navin Viswanathan, Annie J. Olmstead, M. Pilar Aivar, The Use of Vowel Length in Making Voicing Judgments by Native Listeners of English and Spanish: Implications for Rate Normalization, Language and Speech, 10.1177/0023830919851529, (002383091985152), (2019).
- André Aßfalg, Consensus theory for mixed response formats, Journal of Mathematical Psychology, 10.1016/j.jmp.2018.08.005, 86, (51-63), (2018).
- Thales A. M. Ricarte, Mariana Cúri, Alina A. von Davier, Modeling Accidental Mistakes in Multistage Testing: A Simulation Study, Quantitative Psychology, 10.1007/978-3-319-77249-3_5, (55-65), (2018).
- Seher Yalçın, Data Fit Comparison of Mixture Item Response Theory Models and Traditional Models, International Journal of Assessment Tools in Education, 10.21449/ijate.402806, (301-313), (2018).
- Justyna Brzezińska, Item response theory models in the measurement theory, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2018.1546399, (1-15), (2018).
- Peida Zhan, Wen-Chung Wang, Hong Jiao, Yufang Bian, Probabilistic-Input, Noisy Conjunctive Models for Cognitive Diagnosis, Frontiers in Psychology, 10.3389/fpsyg.2018.00997, 9, (2018).
- Stefano Noventa, Andrea Spoto, Jürgen Heller, Augustin Kelava, On a Generalization of Local Independence in Item Response Theory Based on Knowledge Space Theory, Psychometrika, 10.1007/s11336-018-9645-6, (2018).
- Leah M. Feuerstahler, Sources of Error in IRT Trait Estimation, Applied Psychological Measurement, 10.1177/0146621617733955, 42, 5, (359-375), (2017).
- Carina Coulacoglou, Donald H. Saklofske, Classical Test Theory, Generalizability Theory, and Item Response Perspectives on Reliability, Psychometrics and Psychological Assessment, 10.1016/B978-0-12-802219-1.00002-X, (27-44), (2017).
- Nils Myszkowski, Martin Storme, Measuring “Good Taste” with the Visual Aesthetic Sensitivity Test-Revised (VAST-R), Personality and Individual Differences, 10.1016/j.paid.2017.05.041, 117, (91-100), (2017).
- Jie Xu, Insu Paek, Yan Xia, Investigating the Behaviors of M 2 and RMSEA 2 in Fitting a Unidimensional Model to Multidimensional Data , Applied Psychological Measurement, 10.1177/0146621617710464, 41, 8, (632-644), (2017).
- James E. Carlson, Matthias von Davier, Item Response Theory, Advancing Human Assessment, 10.1007/978-3-319-58689-2_5, (133-178), (2017).
- Steven Andrew Culpepper, The Prevalence and Implications of Slipping on Low-Stakes, Large-Scale Assessments, Journal of Educational and Behavioral Statistics, 10.3102/1076998617705653, 42, 6, (706-725), (2017).
- Adéla Drabinová, Patrícia Martinková, Detection of Differential Item Functioning with Nonlinear Regression: A Non‐IRT Approach Accounting for Guessing, Journal of Educational Measurement, 10.1111/jedm.12158, 54, 4, (498-517), (2017).
- Niels G. Waller, Leah Feuerstahler, Bayesian Modal Estimation of the Four-Parameter Item Response Model in Real, Realistic, and Idealized Data Sets, Multivariate Behavioral Research, 10.1080/00273171.2017.1292893, 52, 3, (350-370), (2017).
- Ying Cheng, Cheng Liu, The Effect of Upper and Lower Asymptotes of IRT Models on Computerized Adaptive Testing, Applied Psychological Measurement, 10.1177/0146621615585850, 39, 7, (551-565), (2015).
- Leah M. Feuerstahler, Niels G. Waller, Abstract: Estimation of the 4-Parameter Model with Marginal Maximum Likelihood, Multivariate Behavioral Research, 10.1080/00273171.2014.912889, 49, 3, (285-285), (2014).
- James E. Carlson, Matthias Davier, ITEM RESPONSE THEORY, ETS Research Report Series, 10.1002/j.2333-8504.2013.tb02335.x, 2013, 2, (i-69), (2014).
- David Magis, A Note on the Item Information Function of the Four-Parameter Logistic Model, Applied Psychological Measurement, 10.1177/0146621613475471, 37, 4, (304-315), (2013).
- Yung-Chin Yen, Rong-Guey Ho, Wen-Wei Laio, Li-Ju Chen, Ching-Chin Kuo, An Empirical Evaluation of the Slip Correction in the Four Parameter Logistic Models With Computerized Adaptive Testing, Applied Psychological Measurement, 10.1177/0146621611432862, 36, 2, (75-87), (2012).
- Haruhiko Ogasawara, Asymptotic expansions for the ability estimator in item response theory, Computational Statistics, 10.1007/s00180-011-0282-0, 27, 4, (661-683), (2011).
- Manuel J. Sueiro, Francisco J. Abad, Assessing Goodness of Fit in Item Response Theory With Nonparametric Models, Educational and Psychological Measurement, 10.1177/0013164410393238, 71, 5, (834-848), (2011).
- Eric Loken, Kelly L. Rulison, Estimation of a four‐parameter item response theory model, British Journal of Mathematical and Statistical Psychology, 10.1348/000711009X474502, 63, 3, (509-525), (2010).
- Jon Sertucha, Ramón Suárez, Iker Asenjo, Peio Larrañaga, Jacques Lacaze, Iñaki Ferrer, Susana Armendariz, Thermal Analysis of the Formation of Chunky Graphite during Solidification of Heavy-section Spheroidal Graphite Iron Parts, ISIJ International, 10.2355/isijinternational.49.220, 49, 2, (220-228), (2009).
- David J. Hessen, Constant latent odds-ratios models and the mantel-haenszel null hypothesis, Psychometrika, 10.1007/s11336-002-1040-6, 70, 3, (497-516), (2005).
- Roderick P. McDonald, Future directions for item response theory, International Journal of Educational Research, 10.1016/0883-0355(89)90007-4, 13, 2, (205-220), (1989).




