VAR FORECASTING USING BAYESIAN VARIABLE SELECTION
SUMMARY
This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large dimensions. The performance of the proposed variable selection method is assessed in forecasting three major macroeconomic time series of the UK economy. Data‐based restrictions of VAR coefficients can help improve upon their unrestricted counterparts in forecasting, and in many cases they compare favorably to shrinkage estimators. Copyright © 2011 John Wiley & Sons, Ltd.
Citing Literature
Number of times cited according to CrossRef: 79
- Joshua C.C. Chan, Eric Eisenstat, Rodney W. Strachan, Reducing the state space dimension in a large TVP-VAR, Journal of Econometrics, 10.1016/j.jeconom.2019.11.006, (2020).
- Gary Koop, Stuart McIntyre, James Mitchell, Aubrey Poon, Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970, Journal of Applied Econometrics, 10.1002/jae.2748, 35, 2, (176-197), (2020).
- Young Min Kim, Seojin Lee, Exchange rate predictability: A variable selection perspective, International Review of Economics & Finance, 10.1016/j.iref.2020.05.001, (2020).
- Joshua C. C. Chan, Eric Eisenstat, Chenghan Hou, Gary Koop, Composite likelihood methods for large Bayesian VARs with stochastic volatility, Journal of Applied Econometrics, 10.1002/jae.2793, 0, 0, (2020).
- Jan Prüser, Forecasting US inflation using Markov dimension switching, Journal of Forecasting, 10.1002/for.2723, 0, 0, (2020).
- Lendie Follett, Cindy Yu, Achieving Parsimony in Bayesian Vector Autoregressions with the Horseshoe Prior, Econometrics and Statistics, 10.1016/j.ecosta.2018.12.004, (2019).
- Simon C. Smith, Allan Timmermann, Yinchu Zhu, Variable selection in panel models with breaks, Journal of Econometrics, 10.1016/j.jeconom.2019.04.033, (2019).
- Dimitris Korobilis, Davide Pettenuzzo, Adaptive hierarchical priors for high-dimensional vector autoregressions, Journal of Econometrics, 10.1016/j.jeconom.2019.04.029, (2019).
- Monica Billio, Roberto Casarin, Luca Rossini, Bayesian nonparametric sparse VAR models, Journal of Econometrics, 10.1016/j.jeconom.2019.04.022, (2019).
- Deborah Gefang, Gary Koop, Aubrey Poon, Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage, SSRN Electronic Journal, 10.2139/ssrn.3321510, (2019).
- Zhenning Li, Hao Yu, Guohui Zhang, Jun Wang, A Bayesian vector autoregression-based data analytics approach to enable irregularly-spaced mixed-frequency traffic collision data imputation with missing values, Transportation Research Part C: Emerging Technologies, 10.1016/j.trc.2019.09.013, 108, (302-319), (2019).
- Franz Ruch, Mehmet Balcilar, Rangan Gupta, Mampho P. Modise, Forecasting core inflation: the case of South Africa, Applied Economics, 10.1080/00036846.2019.1701181, (1-19), (2019).
- Kenichiro McAlinn, Knut Are Aastveit, Jouchi Nakajima, Mike West, Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting, Journal of the American Statistical Association, 10.1080/01621459.2019.1660171, (1-19), (2019).
- Satyajit Ghosh, Kshitij Khare, George Michailidis, High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models, Journal of the American Statistical Association, 10.1080/01621459.2018.1437043, 114, 526, (735-748), (2018).
- Gary Koop, Dimitris Korobilis, Davide Pettenuzzo, Bayesian compressed vector autoregressions, Journal of Econometrics, 10.1016/j.jeconom.2018.11.009, (2018).
- Dimitris Korobilis, Machine Learning Macroeconometrics: A Primer, SSRN Electronic Journal, 10.2139/ssrn.3246473, (2018).
- Joshua Chan, Eric Eisenstat, Chenghan Hou, Gary Koop, Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility, SSRN Electronic Journal, 10.2139/ssrn.3187049, (2018).
- Simon Smith, Allan Timmermann, Yinchu Zhu, Variable Selection in Panel Models with Breaks, SSRN Electronic Journal, 10.2139/ssrn.3238230, (2018).
- Silvia Miranda-Agrippino, Giovanni Ricco, Bayesian Vector Autoregressions, SSRN Electronic Journal, 10.2139/ssrn.3253086, (2018).
- Panayotis G. Michaelides, Efthymios G. Tsionas, Konstantinos N. Konstantakis, Debt dynamics in Europe: A Network General Equilibrium GVAR approach, Journal of Economic Dynamics and Control, 10.1016/j.jedc.2018.01.047, 93, (175-202), (2018).
- Daniel R. Kowal, David S. Matteson, David Ruppert, Functional Autoregression for Sparsely Sampled Data, Journal of Business & Economic Statistics, 10.1080/07350015.2017.1279058, 37, 1, (97-109), (2017).
- Yang Aijun, Xiang Ju, Yang Hongqiang, Lin Jinguan, Sparse Bayesian Variable Selection in Probit Model for Forecasting U.S. Recessions Using a Large Set of Predictors, Computational Economics, 10.1007/s10614-017-9660-1, 51, 4, (1123-1138), (2017).
- Aijun Yang, Ju Xiang, Lianjie Shu, Hongqiang Yang, Sparse Bayesian Variable Selection with Correlation Prior for Forecasting Macroeconomic Variable using Highly Correlated Predictors, Computational Economics, 10.1007/s10614-017-9741-1, 51, 2, (323-338), (2017).
- Inske Pirschel, Maik H. Wolters, Forecasting with large datasets: compressing information before, during or after the estimation?, Empirical Economics, 10.1007/s00181-017-1286-6, 55, 2, (573-596), (2017).
- Mehmet Balcilar, Nico Katzke, Rangan Gupta, Do precious metal prices help in forecasting South African inflation?, The North American Journal of Economics and Finance, 10.1016/j.najef.2017.01.007, 40, (63-72), (2017).
- Zeyyad Mandalinci, Forecasting inflation in emerging markets: An evaluation of alternative models, International Journal of Forecasting, 10.1016/j.ijforecast.2017.06.005, 33, 4, (1082-1104), (2017).
- D. Tutberidze, D. Japaridze, MACROECONOMIC FORECASTING USING BAYESIAN VECTOR AUTOREGRESSIVE APPROACH, Bulletin of Taras Shevchenko National University of Kyiv Economics, 10.17721/1728-2667.2017/191-2/7, 191, (42-49), (2017).
- Joshua C.C. Chan, Eric Eisenstat, Efficient estimation of Bayesian VARMAs with time‐varying coefficients, Journal of Applied Econometrics, 10.1002/jae.2576, 32, 7, (1277-1297), (2017).
- Osman TÜZÜN, Üzeyir AYDIN, Ramazan EKİNCİ, TÜRKİYE’DE BERNANKE- BLINDER MAL KREDİ (CC) YAKLAŞIMININ TVP VAR TEKNİĞİ İLE ANALİZİ, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10.17065/huniibf.372351, 35, 4, (1-30), (2017).
- Sebastian Ankargren, Mårten Bjellerup, Hovick Shahnazarian, The importance of the financial system for the real economy, Empirical Economics, 10.1007/s00181-016-1175-4, 53, 4, (1553-1586), (2016).
- Efthymios G. Tsionas, Konstantinos N. Konstantakis, Panayotis G. Michaelides, Bayesian GVAR with k -endogenous dominants & input–output weights: Financial and trade channels in crisis transmission for BRICs, Journal of International Financial Markets, Institutions and Money, 10.1016/j.intfin.2016.01.001, 42, (1-26), (2016).
- Gary Koop, Dimitris Korobilis, Model uncertainty in Panel Vector Autoregressive models, European Economic Review, 10.1016/j.euroecorev.2015.09.006, 81, (115-131), (2016).
- Dimitris Korobilis, Prior selection for panel vector autoregressions, Computational Statistics & Data Analysis, 10.1016/j.csda.2016.02.011, 101, (110-120), (2016).
- Michael S. Smith, Shaun P. Vahey, Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence, Journal of Business & Economic Statistics, 10.1080/07350015.2015.1044533, 34, 3, (416-434), (2016).
- Joshua C.C. Chan, Eric Eisenstat, Gary Koop, Large Bayesian VARMAs, Journal of Econometrics, 10.1016/j.jeconom.2016.02.005, 192, 2, (374-390), (2016).
- Ines Wilms, Christophe Croux, Forecasting using sparse cointegration, International Journal of Forecasting, 10.1016/j.ijforecast.2016.04.005, 32, 4, (1256-1267), (2016).
- Yuxiao Wang, Chee-Ming Ting, Hernando Ombao, Modeling Effective Connectivity in High-Dimensional Cortical Source Signals, IEEE Journal of Selected Topics in Signal Processing, 10.1109/JSTSP.2016.2600023, 10, 7, (1315-1325), (2016).
- Joseph P. Byrne, Dimitris Korobilis, Pinho J. Ribeiro, Exchange rate predictability in a changing world, Journal of International Money and Finance, 10.1016/j.jimonfin.2015.12.001, 62, (1-24), (2016).
- Minfeng Deng, Bayesian Variable Selection in a Large Vector Autoregression for Origin-Destination Traffic Flow Modelling, Spatial Econometric Interaction Modelling, 10.1007/978-3-319-30196-9_10, (199-223), (2016).
- Zhe Yu, Raquel Prado, Erin Burke Quinlan, Steven C. Cramer, Hernando Ombao, Understanding the Impact of Stroke on Brain Motor Function: A Hierarchical Bayesian Approach, Journal of the American Statistical Association, 10.1080/01621459.2015.1133425, 111, 514, (549-563), (2016).
- Fengbin Lu, Shouyang Wang, Autoregressive Conditional Parameter Model and Applications, SSRN Electronic Journal, 10.2139/ssrn.2748946, (2016).
- Ramin Mojab, Probabilistic Forecasting with Stationary VAR Models, SSRN Electronic Journal, 10.2139/ssrn.2818213, (2016).
- Gary Koop, Bayesian Compressed Vector Autoregressions, SSRN Electronic Journal, 10.2139/ssrn.2754241, (2016).
- Dimitrios P. Louzis, Steady-state priors and Bayesian variable selection in VAR forecasting, Studies in Nonlinear Dynamics & Econometrics, 10.1515/snde-2015-0048, 20, 5, (2016).
- Annika Schnncker, Restrictions Search for Panel VARs, SSRN Electronic Journal, 10.2139/ssrn.2865627, (2016).
- Eric Eisenstat, Joshua C. C. Chan, Rodney W. Strachan, Stochastic Model Specification Search for Time-Varying Parameter VARs, Econometric Reviews, 10.1080/07474938.2015.1092808, 35, 8-10, (1638-1665), (2015).
- Mehmet Balcilar, Rangan Gupta, Kevin Kotzé, Forecasting macroeconomic data for an emerging market with a nonlinear DSGE model, Economic Modelling, 10.1016/j.econmod.2014.10.008, 44, (215-228), (2015).
- Michael Stanley Smith, Copula modelling of dependence in multivariate time series, International Journal of Forecasting, 10.1016/j.ijforecast.2014.04.003, 31, 3, (815-833), (2015).
- Salim Lahmiri, Modeling Stock Market Industrial Sectors as Dynamic Systems and Forecasting, Encyclopedia of Information Science and Technology, Third Edition, 10.4018/978-1-4666-5888-2, (3818-3830), (2015).
- Goodness Aye, Pami Dua, Rangan Gupta, Forecasting Indian Macroeconomic Variables Using Medium-Scale VAR Models, Current Trends in Bayesian Methodology with Applications, 10.1201/b18502, (37-57), (2015).
- Mehmet Balcilar, Rangan Gupta, Anandamayee Majumdar, Stephen M. Miller, Was the recent downturn in US real GDP predictable?, Applied Economics, 10.1080/00036846.2015.1011317, 47, 28, (2985-3007), (2015).
- Dimitris Korobilis, Quantile Forecasts of Inflation Under Model Uncertainty, SSRN Electronic Journal, 10.2139/ssrn.2610253, (2015).
- Joshua C. C. Chan, Eric Eisenstat, Efficient Estimation of Bayesian VARMAs with Time-Varying Coefficients, SSRN Electronic Journal, 10.2139/ssrn.2616521, (2015).
- Dimitris Korobilis, Prior Selection for Panel Vector Autoregressions, SSRN Electronic Journal, 10.2139/ssrn.2602508, (2015).
- Gary Koop, Forecasting with dimension switching VARs, International Journal of Forecasting, 10.1016/j.ijforecast.2013.09.005, 30, 2, (280-290), (2014).
- Xiaocong Zhou, Jouchi Nakajima, Mike West, Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models, International Journal of Forecasting, 10.1016/j.ijforecast.2014.03.017, 30, 4, (963-980), (2014).
- Roberto Casarin, Stefano Grassi, Francesco Ravazzolo, H. K. van Dijk, Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox, SSRN Electronic Journal, 10.2139/ssrn.2602418, (2014).
- Eric Eisenstat, Joshua C. C. Chan, Rodney W. Strachan, Stochastic Model Specification Search for Time-Varying Parameter VARs, SSRN Electronic Journal, 10.2139/ssrn.2403560, (2014).
- Dimitris Korobilis, Data-Based Priors for Vector Autoregressions with Drifting Coefficients, SSRN Electronic Journal, 10.2139/ssrn.2392028, (2014).
- Gary Koop, Dimitris Korobilis, Model Uncertainty in Panel Vector Autoregressive Models, SSRN Electronic Journal, 10.2139/ssrn.2487540, (2014).
- Ines Wilms, Christophe Croux, Sparse Cointegration, SSRN Electronic Journal, 10.2139/ssrn.2530403, (2014).
- Dimitris Korobilis, Factor Model Forecasting: A Bayesian Model Averaging (BMA) Perspective, SSRN Electronic Journal, 10.2139/ssrn.2381896, (2014).
- Helmut Luetkepohl, Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey, SSRN Electronic Journal, 10.2139/ssrn.2387644, (2014).
- Petre Caraiani, Do money and financial variables help forecasting output in emerging European Economies?, Empirical Economics, 10.1007/s00181-013-0686-5, 46, 2, (743-763), (2013).
- Sune Karlsson, Forecasting with Bayesian Vector Autoregression, , 10.1016/B978-0-444-62731-5.00015-4, (791-897), (2013).
- Joshua C.C. Chan, Moving average stochastic volatility models with application to inflation forecast, Journal of Econometrics, 10.1016/j.jeconom.2013.05.003, 176, 2, (162-172), (2013).
- Dimitris Korobilis, Bayesian forecasting with highly correlated predictors, Economics Letters, 10.1016/j.econlet.2012.10.003, 118, 1, (148-150), (2013).
- Monica Billio, Roberto Casarin, Francesco Ravazzolo, Herman K. van Dijk, Time-varying combinations of predictive densities using nonlinear filtering, Journal of Econometrics, 10.1016/j.jeconom.2013.04.009, 177, 2, (213-232), (2013).
- Gary Koop, Dimitris Korobilis, Large time-varying parameter VARs, Journal of Econometrics, 10.1016/j.jeconom.2013.04.007, 177, 2, (185-198), (2013).
- Michael S. Smith, Copula Modelling of Dependence in Multivariate Time Series, SSRN Electronic Journal, 10.2139/ssrn.2586849, (2013).
- Joshua C. C. Chan, Moving Average Stochastic Volatility Models with Application to Inflation Forecast, SSRN Electronic Journal, 10.2139/ssrn.2275688, (2013).
- Roberto Casarin, Stefano Grassi, Francesco Ravazzolo, H. K. van Dijk, Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox, SSRN Electronic Journal, 10.2139/ssrn.2256870, (2013).
- Roberto Casarin, Stefano Grassi, Francesco Ravazzolo, H. K. van Dijk, Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox, SSRN Electronic Journal, 10.2139/ssrn.2247332, (2013).
- Stefan Laseen, Ingvar Strid, Debt Dynamics and Monetary Policy: A Note, SSRN Electronic Journal, 10.2139/ssrn.2456215, (2013).
- Dimitris Korobilis, Bayesian Forecasting with Highly Correlated Predictors, SSRN Electronic Journal, 10.2139/ssrn.2163870, (2012).
- Monica Billio, Roberto Casarin, Francesco Ravazzolo, H. K. van Dijk, Time-Varying Combinations of Predictive Densities Using Nonlinear Filtering, SSRN Electronic Journal, 10.2139/ssrn.2172254, (2012).
- Mehmet Balcilar, Rangan Gupta, Anandamayee Majumdar, Stephen M. Miller, Was the Recent Downturn in US GDP Predictable?, SSRN Electronic Journal, 10.2139/ssrn.2176346, (2012).
- Dimitris Korobilis, Gary Koop, Large Time-Varying Parameter VARs, SSRN Electronic Journal, 10.2139/ssrn.2025216, (2012).
- Gary Koop, Dimitris Korobilis, Bayesian Multivariate Time Series Methods for Empirical Macroeconomics, SSRN Electronic Journal, 10.2139/ssrn.1514412, (2009).




