Structure of butterfly scales: Patterning in an insect cuticle
Abstract
All butterfly and moth scales and bristles are made of non‐living insect cuticle. Each is the product of a single epithelial cell, and all share the same basic architecture. However, some are highly specialized, and their cuticle is further elaborated into stacks of thin‐films, lattices, or other minute structures, many of which first came to our attention because they interact, with light to produce structural colors. The scale cell forms the scale by extruding a projection of itself and secreting around it the outer epicuticle, a thin cuticular envelope which will form the outermost layer of the scale. The inner layers of cuticle, collectively called the procuticle, are secreted thereafter and go on to form the lattices, pillars, or other internal structures of the scale. We believe that the pattern‐forming mechanisms used by the cell to shape the cuticle into its finished form include elastic buckling of the outer epicuticle to produce external folds, and “masking” of certain areas of the original epicuticular envelope to produce thin spots which will break through to become windows. Varied though they be, all insect cuticular patterns have common basic elements, which suggests that our findings may be generalized to other highly patterned insect cuticles, particularly those formed by single cells. © 1994 Wiley‐Liss, Inc.
Number of times cited: 38
- Sébastien R. Mouchet and Pete Vukusic, Structural Colours in Lepidopteran Scales, , 10.1016/bs.aiip.2017.11.002, (2018).
- Bodo D. Wilts, Bas Wijnen, Hein L. Leertouwer, Ullrich Steiner and Doekele G. Stavenga, Extreme Refractive Index Wing Scale Beads Containing Dense Pterin Pigments Cause the Bright Colors of Pierid Butterflies, Advanced Optical Materials, 5, 3, (2016).
- Makoto Kazama, Mai Ichinei, Saori Endo, Masaki Iwata, Akiya Hino and Joji M. Otaki, Species‐dependent microarchitectural traits of iridescent scales in the triad taxa of Ornithoptera birdwing butterflies, Entomological Science, 20, 1, (255-269), (2017).
- Olimpia D. Onelli, Thomas van de Kamp, Jeremy N. Skepper, Janet Powell, Tomy dos Santos Rolo, Tilo Baumbach and Silvia Vignolini, Development of structural colour in leaf beetles, Scientific Reports, 7, 1, (2017).
- Joji M. Otaki, Contact-Mediated Eyespot Color-Pattern Changes in the Peacock Pansy Butterfly: Contributions of Mechanical Force and Extracellular Matrix to Morphogenic Signal Propagation, Lepidoptera, 10.5772/intechopen.70098, (2017).
- Lionel Navarro, Anne-Élizabeth Harvey and Hubert Morin, Lepidoptera wing scales: a new paleoecological indicator for reconstructing spruce budworm abundance, Canadian Journal of Forest Research, (1), (2017).
- Jaime Gómez-Morales, Giuseppe Falini and Juan Manuel García-Ruiz, Biological Crystallization, Handbook of Crystal Growth, 10.1016/B978-0-444-56369-9.00020-4, (873-913), (2015).
- Shuichi Kinoshita, Bibliography, Bionanophotonics, 10.1201/b15260-10, (473-489), (2013).
- Natalia Dushkina and Akhlesh Lakhtakia, Structural Colors, Engineered Biomimicry, 10.1016/B978-0-12-415995-2.00011-8, (267-303), (2013).
- R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard and S. Zalubovsky, Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response, Proceedings of the National Academy of Sciences, 10.1073/pnas.1311196110, 110, 39, (15567-15572), (2013).
- Radwanul Hasan Siddique, Silvia Diewald, Juerg Leuthold and Hendrik Hölscher, Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies, Optics Express, 10.1364/OE.21.014351, 21, 12, (14351), (2013).
- Marc J. Klowden, Integumentary Systems, Physiological Systems in Insects, 10.1016/B978-0-12-415819-1.00002-7, (89-147), (2013).
- Feng Liu, Wangzhou Shi, Xinhua Hu and Biqin Dong, Hybrid structures and optical effects in Morpho scales with thin and thick coatings using an atomic layer deposition method, Optics Communications, 291, (416), (2013).
- Shuichi Kinoshita, Dong Zhu and Akira Saito, Modeling and Simulation of Structural Colors, Biomimetics in Photonics, 10.1201/b13067-8, (191-242), (2013).
- Stuart A. Boden, Asa Asadollahbaik, Harvey N. Rutt and Darren M. Bagnall, Helium ion microscopy of Lepidoptera scales, Scanning, 34, 2, (107-120), (2011).
- Gregory S. Watson, Bronwen W. Cribb and Jolanta A. Watson, Particle Adhesion Measurements on Insect Wing Membranes Using Atomic Force Microscopy, ISRN Biophysics, 2012, (1), (2012).
- S. Wickham, L. Poladian, M.C.J. Large and P. Vukusic, Control of iridescence in natural photonic structures: the case of butterfly scales, Optical Biomimetics, 10.1533/9780857097651.147, (147-176e), (2012).
- Thomas E. White, Joseph Macedonia, Debra Birch, Judith Dawes and Darrell J. Kemp, The nanoanatomical basis of sexual dimorphism in iridescent butterfly colouration, Australian Journal of Zoology, 10.1071/ZO12045, 60, 2, (101), (2012).
- S. T. Hyde and G. E. Schroder-Turk, Geometry of interfaces: topological complexity in biology and materials, Interface Focus, 2, 5, (529), (2012).
- G.E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J.D. Fitz Gerald, L. Poladian, M.C.J. Large and S.T. Hyde, The chiral structure of porous chitin within the wing-scales of Callophrys rubi, Journal of Structural Biology, 174, 2, (290), (2011).
- Darrell J. Kemp and Ronald L. Rutowski, The Role of Coloration in Mate Choice and Sexual Interactions in Butterflies, , 10.1016/B978-0-12-380896-7.00002-2, (55-92), (2011).
- S.M. Luke, P. Vukusic and B. Hallam, Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales, Optics Express, 17, 17, (14729), (2009).
- Zakaria A. Almsherqi, Tomas Landh, Sepp D. Kohlwein and Yuru Deng, Chapter 6 Cubic Membranes, , 10.1016/S1937-6448(08)02006-6, (275-342), (2009).
- Pablo Perez Goodwyn, Yasunori Maezono, Naoe Hosoda and Kenji Fujisaki, Waterproof and translucent wings at the same time: problems and solutions in butterflies, Naturwissenschaften, 96, 7, (781), (2009).
- P Vukusic, R Kelly and I Hooper, A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves, Journal of The Royal Society Interface, 6, Suppl_2, (S193), (2009).
- Dong Zhu, Shuichi Kinoshita, Dongsheng Cai and James B. Cole, Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density , Physical Review E, 10.1103/PhysRevE.80.051924, 80, 5, (2009).
- K. Bertoldi, M.C. Boyce, S. Deschanel, S.M. Prange and T. Mullin, Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures, Journal of the Mechanics and Physics of Solids, 10.1016/j.jmps.2008.03.006, 56, 8, (2642-2668), (2008).
- A.L Ingram and A.R Parker, A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990), Philosophical Transactions of the Royal Society B: Biological Sciences, 10.1098/rstb.2007.2258, 363, 1502, (2465-2480), (2008).
- Marc J. Klowden, Integumentary Systems, Physiological Systems in Insects, 10.1016/B978-012369493-5.50003-1, (75-135), (2008).
- S Kinoshita, S Yoshioka and J Miyazaki, Physics of structural colors, Reports on Progress in Physics, 10.1088/0034-4885/71/7/076401, 71, 7, (076401), (2008).
- K Michielsen and D.G Stavenga, Gyroid cuticular structures in butterfly wing scales: biological photonic crystals, Journal of The Royal Society Interface, 10.1098/rsif.2007.1065, 5, 18, (85-94), (2008).
- T. Mullin, S. Deschanel, K. Bertoldi and M. C. Boyce, Pattern Transformation Triggered by Deformation, Physical Review Letters, 10.1103/PhysRevLett.99.084301, 99, 8, (2007).
- S. Yoshioka and S. Kinoshita, Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly, Proceedings of the Royal Society B: Biological Sciences, 273, 1583, (129), (2006).
- Shuichi Kinoshita and Shinya Yoshioka, Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure, ChemPhysChem, 6, 8, (1442-1459), (2005).
- A. Argyros, S. Manos, M.C.J. Large, D.R. McKenzie, G.C. Cox and D.M. Dwarte, Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale, Micron, 33, 5, (483), (2002).
- Victor R. Townsend and Bruce E. Felgenhauer, Ultrastructure of the cuticular scales of lynx spiders (Araneae, Oxyopidae) and jumping spiders (Araneae, Salticidae), Journal of Morphology, 240, 1, (77-92), (1999).
- L. Bingham, I. Bingham, S. Geary, J. Tanner, C. Driscoll, B. Cluff and J. S. Gardner, Sem comparison of morpho butterfly dorsal and ventral scales, Microscopy Research and Technique, 31, 1, (93-94), (2005).
- Andrew D. Pris, Yogen Utturkar, Cheryl Surman, William G. Morris, Alexey Vert, Sergiy Zalyubovskiy, Tao Deng, Helen T. Ghiradella and Radislav A. Potyrailo, Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures, Nature Photonics, 10.1038/nphoton.2011.355, 6, 3, (195-200), (2012)., (2012).




