Bayesian semi‐parametric ROC analysis
Abstract
This paper describes a semi‐parametric Bayesian approach for estimating receiver operating characteristic (ROC) curves based on mixtures of Dirichlet process priors (MDP). We address difficulties in modelling the underlying distribution of screening scores due to non‐normality that may lead to incorrect choices of diagnostic cut‐offs and unreliable estimates of prevalence of the disease. MDP is a robust tool for modelling non‐standard diagnostic distributions associated with imperfect classification of an underlying diseased population, for example, when a diagnostic test is not a gold standard. For posterior computations, we propose an efficient Gibbs sampling framework based on a finite‐dimensional approximation to MDP. We show, using both simulated and real data sets, that MDP modelling for ROC curve estimation closely parallels the frequentist kernel density estimation (KDE) approach. Copyright © 2006 John Wiley & Sons, Ltd.
Citing Literature
Number of times cited according to CrossRef: 39
- Zhen Chen, Beom Seuk Hwang, A Bayesian semiparametric approach to correlated ROC surfaces with stochastic order constraints, Biometrics, 10.1111/biom.12997, 75, 2, (539-550), (2019).
- Chinyereugo M. Umemneku Chikere, Kevin Wilson, Sara Graziadio, Luke Vale, A. Joy Allen, Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard – An update, PLOS ONE, 10.1371/journal.pone.0223832, 14, 10, (e0223832), (2019).
- Jianping Yang, Pei-Fen Kuan, Jialiang Li, Non-monotone transformation of biomarkers to improve diagnostic and screening accuracy in a DNA methylation study with trichotomous phenotypes, Statistical Methods in Medical Research, 10.1177/0962280219882047, (096228021988204), (2019).
- Miguel de Carvalho, Bradley J Barney, Garritt L Page, Affinity-based measures of biomarker performance evaluation, Statistical Methods in Medical Research, 10.1177/0962280219846157, (096228021984615), (2019).
- Blaise Hanczar, Jean-Daniel Zucker, An approach to optimizing abstaining area for small sample data classification, Expert Systems with Applications, 10.1016/j.eswa.2017.11.013, 95, (153-161), (2018).
- Wen Cheng, Gurdiljot Singh Gill, Tom Vo, Jiao Zhou, Taha Sakrani, Use of Bivariate Dirichlet Process Mixture Spatial Model to Estimate Active Transportation-Related Crash Counts, Transportation Research Record: Journal of the Transportation Research Board, 10.1177/0361198118782797, 2672, 38, (105-115), (2018).
- Vanda Inácio de Carvalho, Miguel Carvalho, Adam Branscum, Bayesian bootstrap inference for the receiver operating characteristic surface, Stat, 10.1002/sta4.211, 7, 1, (2018).
- Hua Ma, Andriy I. Bandos, David Gur, Informativeness of diagnostic marker values and the impact of data grouping, Computational Statistics & Data Analysis, 10.1016/j.csda.2017.07.008, 117, (76-89), (2018).
- Vanda Inácio de Carvalho, Adam J Branscum, Bayesian nonparametric inference for the three-class Youden index and its associated optimal cutoff points, Statistical Methods in Medical Research, 10.1177/0962280217742538, 27, 3, (689-700), (2017).
- Polychronis Kostoulas, Søren S. Nielsen, Adam J. Branscum, Wesley O. Johnson, Nandini Dendukuri, Navneet K. Dhand, Nils Toft, Ian A. Gardner, STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models, Preventive Veterinary Medicine, 10.1016/j.prevetmed.2017.01.006, 138, (37-47), (2017).
- Jonathan Aaron Cook, ROC curves and nonrandom data, Pattern Recognition Letters, 10.1016/j.patrec.2016.11.015, 85, (35-41), (2017).
- Le Trung Thanh, Nguyen Thi Anh Dao, Nguyen Linh-Trung, Ha Vu Le, undefined, 2017 International Conference on Advanced Technologies for Communications (ATC), 10.1109/ATC.2017.8167623, (229-234), (2017).
- Vanda Inácio de Carvalho, Miguel de Carvalho, Adam J. Branscum, Nonparametric Bayesian covariate‐adjusted estimation of the Youden index, Biometrics, 10.1111/biom.12686, 73, 4, (1279-1288), (2017).
- Alicja Jokiel-Rokita, Rafał Topolnicki, Minimum distance estimation of the binormal ROC curve, Statistical Papers, 10.1007/s00362-017-0915-7, (2017).
- Zhipeng Huang, Jialiang Li, Ching‐Yu Cheng, Carol Cheung, Tien‐Yin Wong, Bayesian reclassification statistics for assessing improvements in diagnostic accuracy, Statistics in Medicine, 10.1002/sim.6899, 35, 15, (2574-2592), (2016).
- Lori A. Dalton, Optimal ROC-Based Classification and Performance Analysis under Bayesian Uncertainty Models, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10.1109/TCBB.2015.2465966, 13, 4, (719-729), (2016).
- S. Reza Jafarzadeh, Wesley O. Johnson, Ian A. Gardner, Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard, Statistics in Medicine, 10.1002/sim.6745, 35, 6, (859-876), (2015).
- Lili Zhao, Dai Feng, Guoan Chen, Jeremy M. G. Taylor, A unified Bayesian semiparametric approach to assess discrimination ability in survival analysis, Biometrics, 10.1111/biom.12453, 72, 2, (554-562), (2015).
- Adam J. Branscum, Wesley O. Johnson, Timothy E. Hanson, Andre T. Baron, Flexible regression models for ROC and risk analysis, with or without a gold standard, Statistics in Medicine, 10.1002/sim.6610, 34, 30, (3997-4015), (2015).
- Beom Seuk Hwang, Zhen Chen, An Integrated Bayesian Nonparametric Approach for Stochastic and Variability Orders in ROC Curve Estimation: An Application to Endometriosis Diagnosis, Journal of the American Statistical Association, 10.1080/01621459.2015.1023806, 110, 511, (923-934), (2015).
- Vanda Inácio de Carvalho, Alejandro Jara, Miguel de Carvalho, Bayesian Nonparametric Approaches for ROC Curve Inference, Nonparametric Bayesian Inference in Biostatistics, 10.1007/978-3-319-19518-6, (327-344), (2015).
- Vanda Inácio Carvalho, María Xosé Rodríguez‐Álvarez, Statistical Evaluation of Medical Diagnostic Tests, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (1-13), (2014).
- Abel Rodríguez, Julissa C. Martínez, Bayesian semiparametric estimation of covariate-dependent ROC curves, Biostatistics, 10.1093/biostatistics/kxt044, 15, 2, (353-369), (2013).
- Peter Welinder, Max Welling, Pietro Perona, undefined, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 10.1109/CVPR.2013.419, (3262-3269), (2013).
- Polychronis Kostoulas, William J. Browne, Søren S. Nielsen, Leonidas Leontides, Bayesian mixture models for partially verified data: Age- and stage-specific discriminatory power of an antibody ELISA for paratuberculosis, Preventive Veterinary Medicine, 10.1016/j.prevetmed.2013.05.006, 111, 3-4, (200-205), (2013).
- Adam J. Branscum, Wesley O. Johnson, Andre T. Baron, Robust Medical Test Evaluation Using Flexible Bayesian Semiparametric Regression Models, Epidemiology Research International, 10.1155/2013/131232, 2013, (1-8), (2013).
- Muzaffer Musal, Tevfik Aktekin, Bayesian spatial modeling of HIV mortality via zero‐inflated Poisson models, Statistics in Medicine, 10.1002/sim.5457, 32, 2, (267-281), (2012).
- J Menten, M Boelaert, E Lesaffre, An application of Bayesian growth mixture modelling to estimate infection incidences from repeated serological tests, Statistical Modelling: An International Journal, 10.1177/1471082X12465797, 12, 6, (551-578), (2012).
- Dunlei Cheng, Adam J. Branscum, Wesley O. Johnson, Sample size calculations for ROC studies: parametric robustness and Bayesian nonparametrics, Statistics in Medicine, 10.1002/sim.4396, 31, 2, (131-142), (2011).
- Martin Ladouceur, Elham Rahme, Patrick Bélisle, Allison N. Scott, Kevin Schwartzman, Lawrence Joseph, Modeling continuous diagnostic test data using approximate Dirichlet process distributions, Statistics in Medicine, 10.1002/sim.4320, 30, 21, (2648-2662), (2011).
- Howard Rockette, Bayesian ROC Methods, Statistical Evaluation of Diagnostic Performance, 10.1201/b11031-8, (83-100), (2011).
- Lyle D. Broemeling, Bayesian Methods for Medical Test Accuracy, Diagnostics, 10.3390/diagnostics1010001, 1, 1, (1-35), (2011).
- Athanasios Kottas, Bayesian semiparametric modeling for stochastic precedence, with applications in epidemiology and survival analysis, Lifetime Data Analysis, 10.1007/s10985-010-9164-y, 17, 1, (135-155), (2010).
- Dunlei Cheng, Adam J. Branscum, James D. Stamey, A Bayesian approach to sample size determination for studies designed to evaluate continuous medical tests, Computational Statistics & Data Analysis, 10.1016/j.csda.2009.09.024, 54, 2, (298-307), (2010).
- Scott Weichenthal, Lawrence Joseph, Patrick Bélisle, André Dufresne, Bayesian Estimation of the Probability of Asbestos Exposure from Lung Fiber Counts, Biometrics, 10.1111/j.1541-0420.2009.01279.x, 66, 2, (603-612), (2009).
- Timothy E Hanson, Adam J Branscum, Ian A Gardner, Multivariate mixtures of Polya trees for modeling ROC data, Statistical Modelling: An International Journal, 10.1177/1471082X0700800106, 8, 1, (81-96), (2008).
- Adam J. Branscum, Wesley O. Johnson, Timothy E. Hanson, Ian A. Gardner, Bayesian semiparametric ROC curve estimation and disease diagnosis, Statistics in Medicine, 10.1002/sim.3250, 27, 13, (2474-2496), (2008).
- Allison N. Scott, Lawrence Joseph, Patrick Bélisle, Marcel A. Behr, Kevin Schwartzman, Bayesian modelling of tuberculosis clustering from DNA fingerprint data, Statistics in Medicine, 10.1002/sim.2899, 27, 1, (140-156), (2007).
- D. I. Ohlssen, L. D. Sharples, D. J. Spiegelhalter, Flexible random‐effects models using Bayesian semi‐parametric models: applications to institutional comparisons, Statistics in Medicine, 10.1002/sim.2666, 26, 9, (2088-2112), (2006).




