Adaptive kernel estimation of spatial relative risk
Abstract
Kernel smoothing is routinely used for the estimation of relative risk based on point locations of disease cases and sampled controls over a geographical region. Typically, fixed‐bandwidth kernel estimation has been employed, despite the widely recognized problems experienced with this methodology when the underlying densities exhibit the type of spatial inhomogeneity frequently seen in geographical epidemiology. A more intuitive approach is to utilize a spatially adaptive, variable smoothing parameter. In this paper, we examine the properties of the adaptive kernel estimator by both asymptotic analysis and a simulation study, finding advantages over the fixed kernel approach in both the cases. We also look at practical issues with implementation of the adaptive relative risk estimator (including bandwidth choice and boundary correction), and develop a computationally inexpensive method for generating tolerance contours to highlight areas of significantly elevated risk. Copyright © 2010 John Wiley & Sons, Ltd.
Citing Literature
Number of times cited according to CrossRef: 27
- Zhenyu Jiang, Nengxiang Ling, Zudi Lu, Dag Tj⊘stheim, Qiang Zhang, On bandwidth choice for spatial data density estimation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12367, 82, 3, (817-840), (2020).
- Nicolas Bravo‐Vasquez, Cecilia Baumberger, Pedro Jimenez‐Bluhm, Francisca Di Pillo, Andres Lazo, Juan Sanhueza, Stacey Schultz‐Cherry, Christopher Hamilton‐West, Risk factors and spatial relative risk assessment for influenza A virus in poultry and swine in backyard production systems of central Chile, Veterinary Medicine and Science, 10.1002/vms3.254, 6, 3, (518-526), (2020).
- Douwe Hut, Jasper Goseling, Marie-Colette van Lieshout, Peter-Paul de Wolf, Edwin de Jonge, Statistical Disclosure Control When Publishing on Thematic Maps, Privacy in Statistical Databases, 10.1007/978-3-030-57521-2_14, (195-205), (2020).
- Raif M. Rustamov, James T. Klosowski, Kernel mean embedding based hypothesis tests for comparing spatial point patterns, Spatial Statistics, 10.1016/j.spasta.2020.100459, 38, (100459), (2020).
- Juan M. Sanhueza, Mark A. Stevenson, Carles Vilalta, Mariana Kikuti, Cesar A. Corzo, Spatial relative risk and factors associated with porcine reproductive and respiratory syndrome outbreaks in United States breeding herds, Preventive Veterinary Medicine, 10.1016/j.prevetmed.2020.105128, 183, (105128), (2020).
- Nicolai Denzin, Franz J. Conraths, Thomas C. Mettenleiter, Conrad M. Freuling, Thomas Müller, Monitoring of Pseudorabies in Wild Boar of Germany—A Spatiotemporal Analysis, Pathogens, 10.3390/pathogens9040276, 9, 4, (276), (2020).
- Suman Rakshit, Tilman Davies, M. Mehdi Moradi, Greg McSwiggan, Gopalan Nair, Jorge Mateu, Adrian Baddeley, Fast Kernel Smoothing of Point Patterns on a Large Network using Two‐dimensional Convolution, International Statistical Review, 10.1111/insr.12327, 87, 3, (531-556), (2019).
- Walter S. Mathis, Scott Woods, Vinod Srihari, Blind Spots: Spatial analytics can identify nonrandom geographic variation in first episode psychosis program enrollments, Early Intervention in Psychiatry, 10.1111/eip.12681, 12, 6, (1229-1234), (2018).
- Tilman M. Davies, Jonathan C. Marshall, Martin L. Hazelton, Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk, Statistics in Medicine, 10.1002/sim.7577, 37, 7, (1191-1221), (2017).
- Tilman M. Davies, Adrian Baddeley, Fast computation of spatially adaptive kernel estimates, Statistics and Computing, 10.1007/s11222-017-9772-4, 28, 4, (937-956), (2017).
- Martin L. Hazelton, Testing for changes in spatial relative risk, Statistics in Medicine, 10.1002/sim.7306, 36, 17, (2735-2749), (2017).
- Katrina Alger, Elizabeth Bunting, Krysten Schuler, Christopher M. Whipps, RISK FACTORS FOR AND SPATIAL DISTRIBUTION OF LYMPHOPROLIFERATIVE DISEASE VIRUS (LPDV) IN WILD TURKEYS ( MELEAGRIS GALLOPAVO ) IN NEW YORK STATE, USA , Journal of Wildlife Diseases, 10.7589/2016-06-137, 53, 3, (499-508), (2017).
- Alyson Lloyd, James Cheshire, Deriving retail centre locations and catchments from geo-tagged Twitter data, Computers, Environment and Urban Systems, 10.1016/j.compenvurbsys.2016.09.006, 61, (108-118), (2017).
- I. Fuentes-Santos, W. González-Manteiga, J. Mateu, A nonparametric test for the comparison of first-order structures of spatial point processes, Spatial Statistics, 10.1016/j.spasta.2017.02.007, 22, (240-260), (2017).
- Kevin Berg, Stephanie Kuhn, Mike Van Dyke, Spatial Surveillance of Childhood Lead Exposure in a Targeted Screening State, Journal of Public Health Management and Practice, 10.1097/PHH.0000000000000620, 23, (S79-S92), (2017).
- Sarah Neal, Corrine Ruktanonchai, Venkatraman Chandra-Mouli, Zoë Matthews, Andrew J. Tatem, Mapping adolescent first births within three east African countries using data from Demographic and Health Surveys: exploring geospatial methods to inform policy, Reproductive Health, 10.1186/s12978-016-0205-1, 13, 1, (2016).
- Tilman M. Davies, Khair Jones, Martin L. Hazelton, Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function, Computational Statistics & Data Analysis, 10.1016/j.csda.2016.02.008, 101, (12-28), (2016).
- Evaluation of geospatial methods to generate subnational HIV prevalence estimates for local level planning, AIDS, 10.1097/QAD.0000000000001075, 30, 9, (1467-1474), (2016).
- Mellina Yamamura, Marcelino Santos-Neto, Rebeca Augusto Neman dos Santos, Maria Concebida da Cunha Garcia, Jordana de Almeida Nogueira, Ricardo Alexandre Arcêncio, Epidemiological characteristics of cases of death from tuberculosis and vulnerable territories, Revista Latino-Americana de Enfermagem, 10.1590/0104-1169.0450.2631, 23, 5, (910-918), (2015).
- Baylee A. Smith, Tilman M. Davies, Charles F.W. Higham, Spatial and social variables in the Bronze Age Phase 4 cemetery of Ban Non Wat, Northeast Thailand, Journal of Archaeological Science: Reports, 10.1016/j.jasrep.2015.10.003, 4, (362-370), (2015).
- Ondřej Šedivý, Antti Penttinen, Intensity estimation for inhomogeneous Gibbs point process with covariates‐dependent chemical activity, Statistica Neerlandica, 10.1111/stan.12030, 68, 3, (225-249), (2014).
- Tilman M. Davies, Jon Cornwall, Philip W. Sheard, Modelling dichotomously marked muscle fibre configurations, Statistics in Medicine, 10.1002/sim.5806, 32, 24, (4240-4258), (2013).
- Tilman M. Davies, Scaling Oversmoothing Factors for Kernel Estimation of Spatial Relative Risk, Epidemiologic Methods, 10.1515/em-2012-0008, 2, 1, (2013).
- Shelly Lachish, Sarah C. L. Knowles, Ricardo Alves, Irem Sepil, Alicia Davies, Simon Lee, Matthew J. Wood, Ben C. Sheldon, Spatial determinants of infection risk in a multi‐species avian malaria system, Ecography, 10.1111/j.1600-0587.2012.07801.x, 36, 5, (587-598), (2012).
- H. Le, Z. Poljak, R. Deardon, C. E. Dewey, Clustering of and Risk Factors for the Porcine High Fever Disease in a Region of Vietnam, Transboundary and Emerging Diseases, 10.1111/j.1865-1682.2011.01239.x, 59, 1, (49-61), (2011).
- Joseph Larmarange, Roselyne Vallo, Seydou Yaro, Philippe Msellati, Nicolas Méda, Methods for mapping regional trends of HIV prevalence from Demographic and Health Surveys (DHS), Cybergeo, 10.4000/cybergeo.24606, (2011).
- Joseph Larmarange, Roselyne Vallo, Seydou Yaro, Philippe Msellati, Nicolas Méda, Méthodes pour cartographier les tendances régionales de la prévalence du VIH à partir des Enquêtes Démographiques et de Santé (EDS)Methods for mapping regional trends of HIV prevalence from Demographic and Health Surveys (DHS), Cybergeo, 10.4000/cybergeo.23782, (2011).




