Volume 13, Issue 8
Article

Bayesian analysis of survival on multiple time scales

Carlo Berzuini

Diporrimento di Informarica e Sisremisrica. Universira' di Puvia, via Abbiuregrasso 209‐27100 Puviu, Italy

Search for more papers by this author
David Clayton

MRC Biosruristics Unir. Insrirure of Public Healrli. University Foruie Sire. Robinson Way, Cambridge CB2 2SR, U.K.

Search for more papers by this author
First published: 30 April 1994
Citations: 70

Abstract

We propose a Bayesian approach to the analysis of survival data on multiple time scales. Non‐parametric modelling of variation of rates with more than one time scale is achieved using priors which specify smooth variation. Computations are conveniently carried out using Gibbs sampling. We discuss the extension of the method to Bayesian forecasting of rates. Numerical experience of two examples is described.

Number of times cited according to CrossRef: 70

  • Application of resampling techniques to improve the quality of survival analysis risk curves for human frontal bone fracture, Clinical Biomechanics, 10.1016/j.clinbiomech.2018.04.013, 64, (28-34), (2019).
  • Analysis of Evolutionary Trends of Incidence and Mortality by Cancers, Innovations in Smart Cities and Applications, 10.1007/978-3-319-74500-8_71, (778-788), (2018).
  • To Wait or Not to Wait: Two-Way Functional Hazards Model for Understanding Waiting in Call Centers, Journal of the American Statistical Association, 10.1080/01621459.2018.1423985, 113, 524, (1503-1514), (2018).
  • Projecting the future burden of cancer: Bayesian age–period–cohort analysis with integrated nested Laplace approximations, Biometrical Journal, 10.1002/bimj.201500263, 59, 3, (531-549), (2017).
  • Temporal and Spatiotemporal Models for Ambulance Demand, Healthcare Analytics, 10.1002/9781118919408, (389-412), (2016).
  • Mathematical Optimization and Simulation Analyses for Optimal Liver Allocation Boundaries, Healthcare Analytics, 10.1002/9781118919408, (413-437), (2016).
  • A Bayesian Semiparametric Model for Radiation Dose‐Response Estimation, Risk Analysis, 10.1111/risa.12513, 36, 6, (1211-1223), (2015).
  • Stochastic Systems, Multiple Time Scale Dynamics, 10.1007/978-3-319-12316-5_15, (477-524), (2015).
  • Introduction to Survival Analysis, Regression Modeling Strategies, 10.1007/978-3-319-19425-7_17, (399-422), (2015).
  • Non‐parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment, Scandinavian Journal of Statistics, 10.1111/sjos.12125, 42, 2, (609-626), (2014).
  • Bayesian Forecasting of Cohort Fertility, Journal of the American Statistical Association, 10.1080/01621459.2014.881738, 109, 506, (500-513), (2014).
  • Identification and Forecasting in Mortality Models, The Scientific World Journal, 10.1155/2014/347043, 2014, (1-24), (2014).
  • Descriptive Studies, Handbook of Epidemiology, 10.1007/978-0-387-09834-0, (187-258), (2014).
  • Lexis Diagram, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
  • Bayesian Survival Analysis, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
  • Age–Period–Cohort Analysis, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
  • Age–Period–Cohort Analysis, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (1-25), (2014).
  • Estimating cancer incidence using a Bayesian back‐calculation approach, Statistics in Medicine, 10.1002/sim.6240, 33, 25, (4453-4468), (2014).
  • Predicting the Change in Breast Cancer Deaths in Spain by 2019, Epidemiology, 10.1097/EDE.0b013e31828b0866, 24, 3, (454-460), (2013).
  • Time Trends of Italian Former Smokers 1980–2009 and 2010–2030 Projections Using a Bayesian Age Period Cohort Model, International Journal of Environmental Research and Public Health, 10.3390/ijerph110100001, 11, 1, (1-12), (2013).
  • Lung and breast cancer mortality among women in France: Future trends, Cancer Epidemiology, 10.1016/j.canep.2012.07.008, 36, 6, (e341-e348), (2012).
  • Age–Period–Cohort Modeling, Injury Research, 10.1007/978-1-4614-1599-2, (409-426), (2012).
  • Bayesian approach to predicting cancer incidence for an area without cancer registration by using cancer incidence data from nearby areas, Statistics in Medicine, 10.1002/sim.4463, 31, 10, (978-987), (2012).
  • A conditional approach for inference in multivariate age-period-cohort models, Statistical Methods in Medical Research, 10.1177/0962280210379761, 21, 4, (311-329), (2010).
  • A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$, Computational Statistics, 10.1007/s00180-010-0208-2, 26, 2, (241-258), (2010).
  • Forecasting in an Extended Chain‐Ladder‐Type Model, Journal of Risk and Insurance, 10.1111/j.1539-6975.2010.01395.x, 78, 2, (345-359), (2010).
  • References, Applied Bayesian Hierarchical Methods, 10.1201/9781584887218, (495-500), (2010).
  • Cure fraction model with random effects for regional variation in cancer survival, Statistics in Medicine, 10.1002/sim.4046, 29, 27, (2781-2793), (2010).
  • The analysis of heterogeneous time trends in multivariate age–period–cohort models, Biostatistics, 10.1093/biostatistics/kxp037, 11, 1, (57-69), (2009).
  • Joint analysis of prevalence and incidence data using conditional likelihood, Biostatistics, 10.1093/biostatistics/kxp013, 10, 3, (575-587), (2009).
  • Adaptive autoregressive priors for area and time structured mortality data, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2009.01.011, 139, 9, (2870-2884), (2009).
  • Life expectancy and age–period–cohort effects: analysis and projections of mortality in Spain between 1977 and 2016, Public Health, 10.1016/j.puhe.2008.10.026, 123, 2, (156-162), (2009).
  • Predicting Future Excess Events in Risk Assessment, Risk Analysis, 10.1111/j.1539-6924.2009.01197.x, 29, 6, (885-899), (2009).
  • Modeling Age and Nest‐Specific Survival Using a Hierarchical Bayesian Approach, Biometrics, 10.1111/j.1541-0420.2009.01204.x, 65, 4, (1052-1062), (2009).
  • Life Expectancies for Small Areas: A Bayesian Random Effects Methodology, International Statistical Review, 10.1111/j.1751-5823.2009.00080.x, 77, 2, (222-240), (2009).
  • Lung cancer mortality in France, Lung Cancer, 10.1016/j.lungcan.2007.10.012, 59, 3, (282-290), (2008).
  • Nested case–control data utilized for multiple outcomes: a likelihood approach and alternatives, Statistics in Medicine, 10.1002/sim.3416, 27, 28, (5991-6008), (2008).
  • Dynamic Discrete‐time Duration Models: Estimation via Markov Chain Monte Carlo, Sociological Methodology, 10.1111/1467-9531.271033, 27, 1, (417-452), (2008).
  • Forecasting with the age-period-cohort model and the extended chain-ladder model, Biometrika, 10.1093/biomet/asn038, 95, 4, (987-991), (2008).
  • Incidence du cancer du poumon dans le Bas-Rhin : tendance et projections en 2014, Revue des Maladies Respiratoires, 10.1016/S0761-8425(06)71474-7, 23, 2, (117-125), (2006).
  • Increase in schizophrenia incidence rates: findings in a Canadian cohort born 1975–1985, Social Psychiatry and Psychiatric Epidemiology, 10.1007/s00127-006-0073-z, 41, 8, (611-618), (2006).
  • Burden of Breast Cancer in Developing and Developed Countries, Breast Cancer in Women of African Descent, 10.1007/978-1-4020-3664-4, (1-22), (2006).
  • Bayesian statistics in medicine: a 25 year review, Statistics in Medicine, 10.1002/sim.2672, 25, 21, (3589-3631), (2006).
  • Time trends of breast cancer mortality in Spain during the period 1977–2001 and Bayesian approach for projections during 2002–2016, Annals of Oncology, 10.1093/annonc/mdl303, 17, 12, (1783-1791), (2006).
  • Predicting the future burden of cancer, Nature Reviews Cancer, 10.1038/nrc1781, 6, 1, (63-74), (2005).
  • Bayesian Projections: What Are the Effects of Excluding Data from Younger Age Groups?, American Journal of Epidemiology, 10.1093/aje/kwi273, 162, 8, (798-805), (2005).
  • Mortalité par cancer du poumon chez les femmes françaises. Analyse de tendance et projection à l’aide d’un modèle âge-cohorte bayésien, de 1975 à 2014, Revue d'Épidémiologie et de Santé Publique, 10.1016/S0398-7620(05)84586-9, 53, 2, (167-181), (2005).
  • Age–Period–Cohort Analysis, Encyclopedia of Biostatistics, 10.1002/0470011815, (2005).
  • Bayesian Survival Analysis, Encyclopedia of Biostatistics, 10.1002/0470011815, (2005).
  • Lexis Diagram, Encyclopedia of Biostatistics, 10.1002/0470011815, (2005).
  • PROJECTING THE TIME TREND OF THYROID CANCERS: ITS IMPACT ON ASSESSMENT OF RADIATION-INDUCED CANCER RISKS, Health Physics, 10.1097/01.HP.0000138587.93203.c5, 87, 6, (606-614), (2004).
  • Lexis Diagram, Encyclopedia of Statistical Sciences, 10.1002/0471667196, (2004).
  • Non‐Parametric Ecological Regression and Spatial Variation, Biometrical Journal, 10.1002/bimj.200390041, 45, 6, (670-688), (2003).
  • Age–period–cohort models and disease mapping, Environmetrics, 10.1002/env.600, 14, 5, (475-490), (2003).
  • Prediction of cancer incidence in the Nordic countries: empirical comparison of different approaches, Statistics in Medicine, 10.1002/sim.1481, 22, 17, (2751-2766), (2003).
  • Recent trends and future directions for lung cancer mortality in Europe, British Journal of Cancer, 10.1038/sj.bjc.6600352, 87, 1, (43-48), (2002).
  • Cohort Analysis, International Encyclopedia of the Social & Behavioral Sciences, 10.1016/B0-08-043076-7/00401-0, (2189-2194), (2001).
  • Cancer burden in the year 2000. The global picture, European Journal of Cancer, 10.1016/S0959-8049(01)00267-2, 37, (4-66), (2001).
  • A simple two‐stage model for cancer risk in the environment, Environmetrics, 10.1002/env.498, 12, 8, (757-773), (2001).
  • Projections of alcohol‐ and tobacco‐related cancer mortality in Central Europe, International Journal of Cancer, 10.1002/1097-0215(20000701)87:1<122::AID-IJC18>3.0.CO;2-W, 87, 1, (122-128), (2000).
  • Comparison of different approaches to incidence prediction based on simple interpolation techniques, Statistics in Medicine, 10.1002/1097-0258(20000715)19:13<1741::AID-SIM496>3.0.CO;2-O, 19, 13, (1741-1752), (2000).
  • Bayesian modelling of inseparable space‐time variation in disease risk, Statistics in Medicine, 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-#, 19, 17‐18, (2555-2567), (2000).
  • Semi‐parametric estimation of age–time specific infection incidence from serial prevalence data, Statistics in Medicine, 10.1002/(SICI)1097-0258(19990215)18:3<307::AID-SIM15>3.0.CO;2-Z, 18, 3, (307-320), (1999).
  • A hierarchical Bayesian approach to age‐specific back‐calculation of cancer incidence rates, Statistics in Medicine, 10.1002/(SICI)1097-0258(19990430)18:8<919::AID-SIM89>3.0.CO;2-7, 18, 8, (919-933), (1999).
  • Age–period–cohort analysis of chronic disease rates. I: modelling approach, Statistics in Medicine, 10.1002/(SICI)1097-0258(19980630)17:12<1305::AID-SIM853>3.0.CO;2-W, 17, 12, (1305-1323), (1998).
  • Modelling risk from a disease in time and space, Statistics in Medicine, 10.1002/(SICI)1097-0258(19980930)17:18<2045::AID-SIM943>3.0.CO;2-P, 17, 18, (2045-2060), (1998).
  • AUTOREGRESSIVE AGE–PERIOD–COHORT MODELS, Statistics in Medicine, 10.1002/(SICI)1097-0258(19960215)15:3<273::AID-SIM172>3.0.CO;2-R, 15, 3, (273-281), (1998).
  • A unified approach for modeling longitudinal and failure time data, with application in medical monitoring, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10.1109/34.481537, 18, 2, (109-123), (1996).
  • An appreciation of "Cohort analysis of mortality rates as an historical or narrative technique" (RAM Case), Journal of Epidemiology & Community Health, 10.1136/jech.50.2.125, 50, 2, (125-126), (1996).
  • Medical monitoring, Markov Chain Monte Carlo in Practice, 10.1201/b14835, (339-356), (1995).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.