Self‐modelling with random shift and scale parameters and a free‐knot spline shape function
Abstract
The shape invariant model is a semi‐parametric approach to estimating a function relationship from clustered data (multiple observations on each of a number of individuals). The common response curve shape over individuals is estimated by adjusting for individual scaling differences while pooling shape information. In practice, the common response curve is restricted to some flexible family of functions. This paper introduces the use of a free‐knot spline shape function and reduces the number of parameters in the shape invariant model by assuming a random distribution on the parameters that control the individual scaling of the shape function. New graphical diagnostics are presented, parameter identifiability and estimation are discussed, and an example is presented.
Citing Literature
Number of times cited according to CrossRef: 33
- Sophie E. Moore, Andrew M. Doel, Ken K. Ong, David B. Dunger, Nabeel A. Affara, Andrew M. Prentice, Robin M. Bernstein, Identification of nutritionally modifiable hormonal and epigenetic drivers of positive and negative growth deviance in rural African fetuses and infants: Project protocol and cohort description, Gates Open Research, 10.12688/gatesopenres.13101.1, 4, (25), (2020).
- Edouard Fournier, Stéphane Grihon, Thierry Klein, Semiparametric estimation of plane similarities: application to fast computation of aeronautic loads, Statistics, 10.1080/02331888.2019.1632859, (1-19), (2019).
- Mariko Takagishi, Hiroshi Yadohisa, Robust curve registration using the t distribution, Behaviormetrika, 10.1007/s41237-019-00077-5, (2019).
- Sarah R. Crozier, William Johnson, Tim J. Cole, Corrie Macdonald-Wallis, Graciela Muniz-Terrera, Hazel M. Inskip, Kate Tilling, A discussion of statistical methods to characterise early growth and its impact on bone mineral content later in childhood, Annals of Human Biology, 10.1080/03014460.2019.1574896, (1-11), (2019).
- Jungwon Mun, Minkyung Oh, Diagnostics for repeated measurements in nonlinear mixed effects models, Communications in Statistics - Theory and Methods, 10.1080/03610926.2019.1612916, (1-15), (2019).
- Tim James Cole, Optimal design for longitudinal studies to estimate pubertal height growth in individuals, Annals of Human Biology, 10.1080/03014460.2018.1453948, 45, 4, (314-320), (2018).
- Sungduk Kim, Paul S. Albert, Latent Variable Poisson Models for Assessing the Regularity of Circadian Patterns over Time, Journal of the American Statistical Association, 10.1080/01621459.2017.1379402, 113, 523, (992-1002), (2018).
- Marc A. Scott, Mark S. Handcock, Persistent Inequality? Answers From Hybrid Models for Longitudinal Data, Sociological Methods & Research, 10.1177/0049124105277194, 34, 1, (3-30), (2016).
- Tingting Zhang, Fan Li, Marlen Z. Gonzalez, Erin L. Maresh, James A. Coan, A semi-parametric nonlinear model for event-related fMRI, NeuroImage, 10.1016/j.neuroimage.2014.04.017, 97, (178-187), (2014).
- J. ‐L. Wang, Nonparametric Regression Analysis of Longitudinal Data, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
- Michael C. Donohue, Hélène Jacqmin‐Gadda, Mélanie Le Goff, Ronald G. Thomas, Rema Raman, Anthony C. Gamst, Laurel A. Beckett, Clifford R. Jack, Michael W. Weiner, Jean‐François Dartigues, Paul S. Aisen, Estimating long‐term multivariate progression from short‐term data, Alzheimer's & Dementia, 10.1016/j.jalz.2013.10.003, 10, 5S, (S400-S410), (2014).
- J C Jones-Smith, L M Neufeld, B Laraia, U Ramakrishnan, A Garcia-Guerra, L C H Fernald, Early life growth trajectories and future risk for overweight, Nutrition & Diabetes, 10.1038/nutd.2012.32, 3, 2, (e60-e60), (2013).
- Zhumin Zhang, Mary J. Lindstrom, HuiChuan J. Lai, Pubertal Height Velocity and Associations with Prepubertal and Adult Heights in Cystic Fibrosis, The Journal of Pediatrics, 10.1016/j.jpeds.2013.02.026, 163, 2, (376-382.e1), (2013).
- Tingting Zhang, Fan Li, Lane Beckes, James A. Coan, A semi-parametric model of the hemodynamic response for multi-subject fMRI data, NeuroImage, 10.1016/j.neuroimage.2013.02.048, 75, (136-145), (2013).
- Kazuo Hayashi, Meiri Hayashi, Brian Reich, Seung-Pyo Lee, Arjun U.C. Sachdeva, Itaru Mizoguchi, Functional data analysis of mandibular movement using third-degree b-spline basis functions and self-modeling regression, Orthodontic Waves, 10.1016/j.odw.2011.11.001, 71, 1, (17-25), (2012).
- Angelo Elmi, Sarah J. Ratcliffe, Samuel Parry, Wensheng Guo, A B-Spline Based Semiparametric Nonlinear Mixed Effects Model, Journal of Computational and Graphical Statistics, 10.1198/jcgs.2010.09001, 20, 2, (492-509), (2011).
- S. Bandyopadhyay, B. Ganguli, A. Chatterjee, A review of multivariate longitudinal data analysis, Statistical Methods in Medical Research, 10.1177/0962280209340191, 20, 4, (299-330), (2010).
- Kazuo Hayashi, Itaru Mizoguchi, Seung-Pyo Lee, Brian Reich, Development of a novel statistical model for mandibular kinematics, Medical Engineering & Physics, 10.1016/j.medengphy.2010.04.005, 32, 5, (423-428), (2010).
- Holger Hürtgen, Daniel Gervini, Semiparametric shape-invariant models for periodic data, Journal of Applied Statistics, 10.1080/02664760802562472, 36, 10, (1055-1065), (2009).
- Naomi Altman, Julio Villarreal, Self‐modelling regression for longitudinal data with time‐invariant covariates, Canadian Journal of Statistics, 10.2307/3315928, 32, 3, (251-268), (2008).
- Harri J. Heikkilä, NEW MODELS FOR PHARMACOKINETIC DATA BASED ON A GENERALIZED WEIBULL DISTRIBUTION, Journal of Biopharmaceutical Statistics, 10.1081/BIP-100101002, 9, 1, (89-107), (2007).
- Ken J. Beath, Infant growth modelling using a shape invariant model with random effects, Statistics in Medicine, 10.1002/sim.2718, 26, 12, (2547-2564), (2006).
- Kert Viele, Mark Lancaster, Robin L. Cooper, Self‐modeling structure of evoked postsynaptic potentials, Synapse, 10.1002/syn.20274, 60, 1, (32-44), (2006).
- J. ‐L. Wang, Nonparametric Regression Analysis of Longitudinal Data, Encyclopedia of Biostatistics, 10.1002/0470011815, (2005).
- Lyndia C. Brumback, Mary J. Lindstrom, Self Modeling with Flexible, Random Time Transformations, Biometrics, 10.1111/j.0006-341X.2004.00191.x, 60, 2, (461-470), (2004).
- William M. Ladd, Mary J. Lindstrom, Self‐Modeling for Two‐Dimensional Response Curves, Biometrics, 10.1111/j.0006-341X.2000.00089.x, 56, 1, (89-97), (2004).
- David B Dunson, Bernardo Colombo, Bayesian Modeling of Markers of Day-Specific Fertility, Journal of the American Statistical Association, 10.1198/016214503388619067, 98, 461, (28-37), (2003).
- Marie Davidian, David M. Giltinan, Nonlinear models for repeated measurement data: An overview and update, Journal of Agricultural, Biological, and Environmental Statistics, 10.1198/1085711032697, 8, 4, (387-419), (2003).
- Yuedong Wang, Chunlei Ke, Morton B. Brown, Shape‐Invariant Modeling of Circadian Rhythms with Random Effects and Smoothing Spline ANOVA Decompositions, Biometrics, 10.1111/j.0006-341X.2003.00094.x, 59, 4, (804-812), (2003).
- Elena A Erosheva, Patricia D Kroboth, Joel B Greenhouse, Characterizing the Diurnal Rhythm of DHEA, The American Statistician, 10.1198/000313002579, 56, 4, (273-283), (2002).
- Robert Cudeck, Kelli J. Klebe, Multiphase mixed-effects models for repeated measures data., Psychological Methods, 10.1037/1082-989X.7.1.41, 7, 1, (41-63), (2002).
- Chunlei Ke, Yuedong Wang, Semiparametric Nonlinear Mixed-Effects Models and Their Applications, Journal of the American Statistical Association, 10.1198/016214501753381913, 96, 456, (1272-1298), (2001).
- Hans-Georg Müller, Jane-Ling Wang, Statistical Tools for the Analysis of Nutrition Effects on the Survival of Cohorts, Mathematical Modeling in Experimental Nutrition, 10.1007/978-1-4899-1959-5_12, (191-203), (1998).




