Bayesian analysis of space—time variation in disease risk
Abstract
The analysis of variation of risk for a given disease in space and time is a key issue in descriptive epidemiology. When the data are scarce, maximum likelihood estimates of the area‐specific risk and of its linear time‐trend can be seriously affected by random variation. In this paper, we propose a Bayesian model in which both area‐specific intercept and trend are modelled as random effects and correlation between them is allowed for. This model is an extension of that originally proposed for disease mapping. It is illustrated by the analysis of the cumulative prevalence of insulin dependent diabetes mellitus as observed at the military examination of 18‐year‐old conscripts born in Sardinia during the period 1936–1971. Data concerning the genetic differentiation of the Sardinian population are used to interpret the results.
Citing Literature
Number of times cited according to CrossRef: 252
- Magdalena Cerdá, William R. Ponicki, Nathan Smith, Ariadne Rivera-Aguirre, Corey S. Davis, Brandon D.L. Marshall, David S. Fink, Stephen G. Henry, Alvaro Castillo-Carniglia, Garen J. Wintemute, Andrew Gaidus, Paul J. Gruenewald, Silvia S. Martins, Measuring Relationships Between Proactive Reporting State-level Prescription Drug Monitoring Programs and County-level Fatal Prescription Opioid Overdoses, Epidemiology, 10.1097/EDE.0000000000001123, 31, 1, (32-42), (2020).
- Duncan Lee, A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2020.100353, (100353), (2020).
- Ioanna Ioannou, Richard E. Chandler, Tiziana Rossetto, Empirical fragility curves: The effect of uncertainty in ground motion intensity, Soil Dynamics and Earthquake Engineering, 10.1016/j.soildyn.2019.105908, 129, (105908), (2020).
- Wen Cheng, Gurdiljot Singh Gill, Yongping Zhang, Tom Vo, Frank Wen, Yihua Li, Exploring the modeling and site-ranking performance of Bayesian spatiotemporal crash frequency models with mixture components, Accident Analysis & Prevention, 10.1016/j.aap.2019.105357, 135, (105357), (2020).
- Jun Ye, Max J. Moreno-Madriñán, Comparing different spatio-temporal modeling methods in dengue fever data analysis in Colombia during 2012–2015, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2020.100360, 34, (100360), (2020).
- Fei Han, Junming Li, Assessing impacts and determinants of China's environmental protection tax on improving air quality at provincial level based on Bayesian statistics, Journal of Environmental Management, 10.1016/j.jenvman.2020.111017, 271, (111017), (2020).
- Gavino Puggioni, Jannelle Couret, Emily Serman, Ali S. Akanda, Howard S. Ginsberg, Spatiotemporal Modeling of Dengue Fever Risk in Puerto Rico, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2020.100375, (100375), (2020).
- Karen Flórez‐Lozano, Edgar Navarro‐Lechuga, Humberto Llinás‐Solano, Rafael Tuesca‐Molina, Augusto Sisa‐Camargo, Marcela Mercado‐Reyes, Martha Ospina‐Martínez, Franklyn Prieto‐Alvarado, Jorge Acosta‐Reyes, Spatial distribution of the relative risk of Zika virus disease in Colombia during the 2015–2016 epidemic from a Bayesian approach, International Journal of Gynecology & Obstetrics, 10.1002/ijgo.13048, 148, S2, (55-60), (2020).
- Aswi Aswi, Susanna Cramb, Wenbiao Hu, Gentry White, Kerrie L. Mengersen, Spatio-Temporal Analysis of Dengue Fever in Makassar Indonesia: A Comparison of Models Based on CARBayes, Case Studies in Applied Bayesian Data Science, 10.1007/978-3-030-42553-1_9, (229-244), (2020).
- Guanpeng Dong, Thomas Statham, Geography of broadband faults explored with a Bayesian spatio-temporal statistical model, Applied Geography, 10.1016/j.apgeog.2020.102308, 123, (102308), (2020).
- Raul Caetano, Patrice A. C. Vaeth, Paul J. Gruenewald, William R. Ponicki, Zoe B. Kaplan, Rachelle Annechino, Proximity to the Southern Border and Sociodemographic Correlates of Drinking and Driving Arrests in California, Alcoholism: Clinical and Experimental Research, 10.1111/acer.14439, 0, 0, (2020).
- Ezra Gayawan, Christiana Nyarko Adjei, Bayesian spatio-temporal analysis of breastfeeding practices in Ghana, GeoJournal, 10.1007/s10708-020-10168-6, (2020).
- Win Wah, Susannah Ahern, Arul Earnest, A systematic review of Bayesian spatial–temporal models on cancer incidence and mortality, International Journal of Public Health, 10.1007/s00038-020-01384-5, (2020).
- Ning Jin, Junming Li, Meijun Jin, Xiaoyan Zhang, Spatiotemporal variation and determinants of population’s PM2.5 exposure risk in China, 1998–2017: a case study of the Beijing-Tianjin-Hebei region, Environmental Science and Pollution Research, 10.1007/s11356-020-09484-8, (2020).
- Zhensheng Wang, Yang Yue, Biao He, Ke Nie, Wei Tu, Qingyun Du, Qingquan Li, A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data, International Journal of Geographical Information Science, 10.1080/13658816.2020.1798967, (1-19), (2020).
- Qi Zhang, Chunlin Li, Ying Wang, Ye Li, Xiaohu Han, Huan Zhang, Dali Wang, Yilan Liao, Zeliang Chen, Temporal and spatial distribution trends of human brucellosis in Liaoning Province, China, Transboundary and Emerging Diseases, 10.1111/tbed.13739, 0, 0, (2020).
- Shino Shiode, Narushige Shiode, Crime Geosurveillance in Microscale Urban Environments: NetSurveillance, Annals of the American Association of Geographers, 10.1080/24694452.2019.1696663, (1-21), (2020).
- Shenghan Guo, Weihong “Grace’’ Guo, Linkan Bain, Hierarchical spatial-temporal modeling and monitoring of melt pool evolution in laser-based additive manufacturing, IISE Transactions, 10.1080/24725854.2019.1704465, (1-21), (2020).
- G. Vicente, T. Goicoa, P. Fernandez‐Rasines, M. D. Ugarte, Crime against women in India: unveiling spatial patterns and temporal trends of dowry deaths in the districts of Uttar Pradesh, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12545, 183, 2, (655-679), (2019).
- Aritz Adin, Tomás Goicoa, María Dolores Ugarte, Online relative risks/rates estimation in spatial and spatio-temporal disease mapping, Computer Methods and Programs in Biomedicine, 10.1016/j.cmpb.2019.02.014, (2019).
- Paula Simões, M. Lucília Carvalho, Sandra Aleixo, Sérgio Gomes, Isabel Natário, A Spatio-Temporal Auto-regressive Model for Generating Savings Calls to a Health Line, Computational Science and Its Applications – ICCSA 2019, 10.1007/978-3-030-24302-9_7, (81-96), (2019).
- Peter Congdon, Bayesian Modeling of Spatial Data, Handbook of Regional Science, 10.1007/978-3-642-36203-3, (1-20), (2019).
- Edson Zangiacomi Martinez, Daiane Leite da Roza, Ecological analysis of adolescent birth rates in Brazil: Association with Human Development Index, Women and Birth, 10.1016/j.wombi.2019.04.002, (2019).
- Alvaro Castillo-Carniglia, William R. Ponicki, Andrew Gaidus, Paul J. Gruenewald, Brandon D. L. Marshall, David S. Fink, Silvia S. Martins, Ariadne Rivera-Aguirre, Garen J. Wintemute, Magdalena Cerdá, Prescription Drug Monitoring Programs and Opioid Overdoses, Epidemiology, 10.1097/EDE.0000000000000950, 30, 2, (212-220), (2019).
- Junming Li, Xiulan Han, Xiangxue Zhang, Sixian Wang, Spatiotemporal evolution of global population ageing from 1960 to 2017, BMC Public Health, 10.1186/s12889-019-6465-2, 19, 1, (2019).
- Frank Badu Osei, Alfred Stein, Bayesian Random Effect Modeling for analyzing spatial clustering of differential time trends of diarrhea incidences, Scientific Reports, 10.1038/s41598-019-49549-4, 9, 1, (2019).
- Zhenning Li, Xiaofeng Chen, Yusheng Ci, Cong Chen, Guohui Zhang, A hierarchical Bayesian spatiotemporal random parameters approach for alcohol/drug impaired-driving crash frequency analysis, Analytic Methods in Accident Research, 10.1016/j.amar.2019.01.002, (2019).
- Verrah Otiende, Thomas Achia, Henry Mwambi, Bayesian modeling of spatiotemporal patterns of TB-HIV co-infection risk in Kenya, BMC Infectious Diseases, 10.1186/s12879-019-4540-z, 19, 1, (2019).
- Eilidh Jack, Duncan Lee, Nema Dean, Estimating the changing nature of Scotland's health inequalities by using a multivariate spatiotemporal model, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12447, 182, 3, (1061-1080), (2019).
- Silvia S. Martins, William Ponicki, Nathan Smith, Ariadne Rivera-Aguirre, Corey S. Davis, David S. Fink, Alvaro Castillo-Carniglia, Stephen G. Henry, Brandon D.L. Marshall, Paul Gruenewald, Magdalena Cerdá, Prescription drug monitoring programs operational characteristics and fatal heroin poisoning, International Journal of Drug Policy, 10.1016/j.drugpo.2019.10.001, 74, (174-180), (2019).
- Yewu Zhang, Xiaofeng Wang, Yanfei Li, Jiaqi Ma, Spatiotemporal Analysis of Influenza in China, 2005–2018, Scientific Reports, 10.1038/s41598-019-56104-8, 9, 1, (2019).
- Vahid Ahmadipanahmehrabadi, Akbar Hassanzadeh, Behzad Mahaki, Bivariate spatio-temporal shared component modeling: Mapping of relative death risk due to colorectal and stomach cancers in Iran provinces, International Journal of Preventive Medicine, 10.4103/ijpvm.IJPVM_31_17, 10, 1, (39), (2019).
- Nurul Syafiah Abd Naeeim, Nuzlinda Abdul Rahman, Fatin Afiqah Muhammad Fahimi, A spatial–temporal study of dengue in Peninsular Malaysia for the year 2017 in two different space–time model, Journal of Applied Statistics, 10.1080/02664763.2019.1648391, (1-18), (2019).
- I. Gede Nyoman Mindra Jaya, Henk Folmer, Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia, Journal of Geographical Systems, 10.1007/s10109-019-00311-4, (2019).
- Wen Cheng, Gurdiljot Singh Gill, Jiao Zhou, John L. Ensch, Jerry Kwong, Xudong Jia, Alternative multivariate multimodal crash frequency models, Journal of Transportation Safety & Security, 10.1080/19439962.2018.1525631, (1-25), (2019).
- Sri Astuti Thamrin, undefined Alimun, Geographical Mapping of Dengue Fever Incidence 2012-2016 in Makassar, Indonesia, IOP Conference Series: Earth and Environmental Science, 10.1088/1755-1315/279/1/012013, 279, (012013), (2019).
- Ravi Ancil Persad, Bayesian Space–Time Analysis of Brain Cancer Incidence in Southern Ontario, Canada: 2010–2013, Medical Sciences, 10.3390/medsci7120110, 7, 12, (110), (2019).
- Dawn Williams, James Haworth, Marta Blangiardo, Tao Cheng, A Spatiotemporal Bayesian Hierarchical Approach to Investigating Patterns of Confidence in the Police at the Neighborhood Level, Geographical Analysis, 10.1111/gean.12160, 51, 1, (90-110), (2018).
- Miriam Marco, Enrique Gracia, Antonio López-Quílez, Marisol Lila, What calls for service tell us about suicide: A 7-year spatio-temporal analysis of neighborhood correlates of suicide-related calls, Scientific Reports, 10.1038/s41598-018-25268-0, 8, 1, (2018).
- Chao Song, Xiu Yang, Xun Shi, Yanchen Bo, Jinfeng Wang, Estimating missing values in China’s official socioeconomic statistics using progressive spatiotemporal Bayesian hierarchical modeling, Scientific Reports, 10.1038/s41598-018-28322-z, 8, 1, (2018).
- Xiulan Han, Junming Li, Nannan Wang, Spatiotemporal evolution of Chinese ageing from 1992 to 2015 based on an improved Bayesian space-time model, BMC Public Health, 10.1186/s12889-018-5417-6, 18, 1, (2018).
- Zahra Sharafi, Naeimehossadat Asmarian, Saeed Hoorang, Amin Mousavi, Bayesian spatio-temporal analysis of stomach cancer incidence in Iran, 2003–2010, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-018-1531-3, 32, 10, (2943-2950), (2018).
- Suparna Das, Jenevieve Opoku, Michael Kharfen, Adam Allston, Geographic patterns of poor HIV/AIDS care continuum in District of Columbia, AIDS Research and Therapy, 10.1186/s12981-018-0189-8, 15, 1, (2018).
- Seungwon Kim, Youngho Kim, Hierarchical Bayesian modeling of spatio-temporal patterns of scrub typhus incidence for 2009–2013 in South Korea, Applied Geography, 10.1016/j.apgeog.2018.08.008, 100, (1-11), (2018).
- Emanuela Dreassi, Lung Cancer Mortality in Tuscany from 1971 to 2010 and Its Connections with Silicosis: A Space-Cohort Analysis Based on Shared Models, Computational and Mathematical Methods in Medicine, 10.1155/2018/4964569, 2018, (1-10), (2018).
- Wen Cheng, Gurdiljot Singh Gill, Simon Choi, Jiao Zhou, Xudong Jia, Meiquan Xie, Comparative evaluation of temporal correlation treatment in crash frequency modelling, Transportmetrica A: Transport Science, 10.1080/23249935.2017.1418458, 14, 7, (615-633), (2018).
- C. Edson Utazi, Emmanuel O. Afuecheta, C. Christopher Nnanatu, A Bayesian latent process spatiotemporal regression model for areal count data, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2018.01.003, 25, (25-37), (2018).
- Abdul-Karim Iddrisu, Abukari Alhassan, Nafiu Amidu, Investigating Spatio-Temporal Pattern of Relative Risk of Tuberculosis in Kenya Using Bayesian Hierarchical Approaches, Journal of Tuberculosis Research, 10.4236/jtr.2018.62017, 06, 02, (175-197), (2018).
- Gurdiljot Singh Gill, Wen Cheng, Jiao Zhou, Xudong Jia, Comprehensive Assessment of Temporal Treatments in Crash Prediction Models, Transportation Research Record: Journal of the Transportation Research Board, 10.1177/0361198118782763, 2672, 38, (93-104), (2018).
- Ro’fah Nur Rachmawati, Novi Hidayat Pusponegoro, Spatio-Temporal Poverty Analysis with INLA in Hierarchical Bayes Ecological Regression, Procedia Computer Science, 10.1016/j.procs.2018.08.180, 135, (323-330), (2018).
- Nisheet Nautiyal, Theodore R. Holford, A spatiotemporal back‐calculation approach to estimate cancer incidence measures, Statistics in Medicine, 10.1002/sim.7934, 37, 29, (4472-4489), (2018).
- William R. Ponicki, Jeffrey A. Henderson, Andrew Gaidus, Paul J. Gruenewald, Juliet P. Lee, Roland S. Moore, Sharice Davids, Nick Tilsen, Spatial Epidemiology of Alcohol‐ and Drug‐Related Health Problems Among Northern Plains American Indians: Nebraska and South Dakota, 2007 to 2012, Alcoholism: Clinical and Experimental Research, 10.1111/acer.13580, 42, 3, (578-588), (2018).
- Robert Lipton, William R. Ponicki, Paul J. Gruenewald, Andrew Gaidus, Space–Time Analyses of Alcohol Outlets and Related Motor Vehicle Crashes: Associations at City and Census Block‐Group Levels, Alcoholism: Clinical and Experimental Research, 10.1111/acer.13758, 42, 6, (1113-1121), (2018).
- Lyndsay Shand, Bo Li, Trevor Park, Dolores Albarracín, Spatially varying auto‐regressive models for prediction of new human immunodeficiency virus diagnoses, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12269, 67, 4, (1003-1022), (2018).
- Miriam Marco, Enrique Gracia, Antonio López‐Quílez, The university campus environment as a protective factor for intimate partner violence against women: An exploratory study, Journal of Community Psychology, 10.1002/jcop.21980, 46, 7, (903-916), (2018).
- Gary Napier, Duncan Lee, Chris Robertson, Andrew Lawson, A Bayesian space–time model for clustering areal units based on their disease trends, Biostatistics, 10.1093/biostatistics/kxy024, (2018).
- A Adin, D Lee, T Goicoa, María Dolores Ugarte, A two-stage approach to estimate spatial and spatio-temporal disease risks in the presence of local discontinuities and clusters, Statistical Methods in Medical Research, 10.1177/0962280218767975, (096228021876797), (2018).
- Caitlin Ward, Jacob Oleson, Katie Jones, Mary Charlton, Showcasing Cancer Incidence and Mortality in Rural ZCTAs Using Risk Probabilities via Spatio-Temporal Bayesian Disease Mapping, Applied Spatial Analysis and Policy, 10.1007/s12061-018-9276-4, (2018).
- Jungsoon Choi, Andrew B Lawson, A Bayesian two-stage spatially dependent variable selection model for space–time health data, Statistical Methods in Medical Research, 10.1177/0962280218767980, (096228021876798), (2018).
- Jinhyung Lee, Youngho Kim, “A Newcomer” versus “First Mover”: Retail Location Strategy for Differentiation, The Professional Geographer, 10.1080/00330124.2017.1310621, 70, 1, (22-33), (2017).
- Andrew B. Lawson, Public Health and Spatial Modeling, Encyclopedia of GIS, 10.1007/978-3-319-17885-1, (1678-1691), (2017).
- Andrew Lawson, Duncan Lee, Bayesian Disease Mapping for Public Health, Disease Modelling and Public Health, Part A, 10.1016/bs.host.2017.05.001, (443-481), (2017).
- Paula Moraga, SpatialEpiApp : A Shiny web application for the analysis of spatial and spatio-temporal disease data, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2017.08.001, 23, (47-57), (2017).
- M.D. Ugarte, A. Adin, T. Goicoa, One-dimensional, two-dimensional, and three dimensional B-splines to specify space –time interactions in Bayesian disease mapping: Model fitting and model identifiability, Spatial Statistics, 10.1016/j.spasta.2017.04.002, (2017).
- I Gede Nyoman Mindra Jaya, Henk Folmer, Budi Nurani Ruchjana, Farah Kristiani, Yudhie Andriyana, Modeling of Infectious Diseases: A Core Research Topic for the Next Hundred Years, Regional Research Frontiers - Vol. 2, 10.1007/978-3-319-50590-9_15, (239-255), (2017).
- Thaís C. O. Fonseca, Marco A. R. Ferreira, Dynamic Multiscale Spatiotemporal Models for Poisson Data, Journal of the American Statistical Association, 10.1080/01621459.2015.1129968, 112, 517, (215-234), (2017).
- Marco Helbich, Paul L. Plener, Sebastian Hartung, Victor Blüml, Spatiotemporal Suicide Risk in Germany: A Longitudinal Study 2007–11, Scientific Reports, 10.1038/s41598-017-08117-4, 7, 1, (2017).
- Xiaoxiang Ma, Suren Chen, Feng Chen, Multivariate space-time modeling of crash frequencies by injury severity levels, Analytic Methods in Accident Research, 10.1016/j.amar.2017.06.001, 15, (29-40), (2017).
- Linda Cyrilla, Farah Kristiani, A comparative analysis of Standardized Morbidity Ratio (SMR) and Poisson-Gamma models to estimate the relative risk: Car accident insurance claims in Bandung- Indonesia, Model Assisted Statistics and Applications, 10.3233/MAS-160381, 12, 1, (31-38), (2017).
- Farah Kristiani, Nor Azah Samat, Sazelli bin Ab Ghani, The SIR-SI model with age-structured human population for dengue disease mapping in Bandung, Indonesia, Model Assisted Statistics and Applications, 10.3233/MAS-170391, 12, 2, (151-161), (2017).
- Chenhui Liu, Anuj Sharma, Exploring spatio-temporal effects in traffic crash trend analysis, Analytic Methods in Accident Research, 10.1016/j.amar.2017.09.002, 16, (104-116), (2017).
- Susanna M. Cramb, Paula Moraga, Kerrie L. Mengersen, Peter D. Baade, Spatial variation in cancer incidence and survival over time across Queensland, Australia, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2017.09.002, 23, (59-67), (2017).
- Chiara Marinacci, Moreno Demaria, Giulia Melis, Carme Borrell, Diana Corman, Marc Marí Dell’Olmo, Maica Rodriguez, Giuseppe Costa, The Role of Contextual Socioeconomic Circumstances and Neighborhood Poverty Segregation on Mortality in 4 European Cities, International Journal of Health Services, 10.1177/0020731417732959, 47, 4, (636-654), (2017).
- Carlos Carcach, A spatio-temporal analysis of suicide in El Salvador, BMC Public Health, 10.1186/s12889-017-4251-6, 17, 1, (2017).
- Enrique Gracia, Antonio López-Quílez, Miriam Marco, Marisol Lila, Mapping child maltreatment risk: a 12-year spatio-temporal analysis of neighborhood influences, International Journal of Health Geographics, 10.1186/s12942-017-0111-y, 16, 1, (2017).
- Feifei Wang, Jian Wang, Alan Gelfand, Fan Li, Accommodating the ecological fallacy in disease mapping in the absence of individual exposures, Statistics in Medicine, 10.1002/sim.7494, 36, 30, (4930-4942), (2017).
- Andrew B. Lawson, Rachel Carroll, Christel Faes, Russell S. Kirby, Mehreteab Aregay, Kevin Watjou, Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping, Environmetrics, 10.1002/env.2465, 28, 8, (2017).
- Feifei Wang, Jian Wang, Alan E. Gelfand, Fan Li, Disease Mapping With Generative Models, The American Statistician, 10.1080/00031305.2017.1392358, (1-11), (2017).
- Craig Anderson, Louise Ryan, A Comparison of Spatio-Temporal Disease Mapping Approaches Including an Application to Ischaemic Heart Disease in New South Wales, Australia, International Journal of Environmental Research and Public Health, 10.3390/ijerph14020146, 14, 2, (146), (2017).
- Miriam Marco, Bridget Freisthler, Enrique Gracia, Antonio López-Quílez, Marisol Lila, Neighborhood Characteristics, Alcohol Outlet Density, and Alcohol-Related Calls-for-Service: A Spatiotemporal Analysis in a Wet Drinking Country, ISPRS International Journal of Geo-Information, 10.3390/ijgi6120380, 6, 12, (380), (2017).
- Miriam Marco, Enrique Gracia, Antonio López-Quílez, Linking Neighborhood Characteristics and Drug-Related Police Interventions: A Bayesian Spatial Analysis, ISPRS International Journal of Geo-Information, 10.3390/ijgi6030065, 6, 3, (65), (2017).
- Miriam Marco, Antonio López-Quílez, David Conesa, Enrique Gracia, Marisol Lila, Spatio-Temporal Analysis of Suicide-Related Emergency Calls, International Journal of Environmental Research and Public Health, 10.3390/ijerph14070735, 14, 7, (735), (2017).
- T. Goicoa, A. Adin, M. D. Ugarte, J. S. Hodges, In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-017-1405-0, (2017).
- Chengdong Xu, Gexin Xiao, Jinfeng Wang, Xiangxue Zhang, Jinjun Liang, Spatiotemporal Risk of Bacillary Dysentery and Sensitivity to Meteorological Factors in Hunan Province, China, International Journal of Environmental Research and Public Health, 10.3390/ijerph15010047, 15, 1, (47), (2017).
- Tohid Jafari-Koshki, Shahram Arsang-Jang, Behzad Mahaki, Bladder Cancer in Iran: Geographical Distribution and Risk Factors, Iranian Journal of Cancer Prevention, 10.5812/ijcp.5610, In Press, In Press, (2017).
- Chawarat Rotejanaprasert, Andrew Lawson, Bayesian prospective detection of small area health anomalies using Kullback–Leibler divergence, Statistical Methods in Medical Research, 10.1177/0962280216652156, 27, 4, (1076-1087), (2016).
- Craig Anderson, Duncan Lee, Nema Dean, Spatial clustering of average risks and risk trends in Bayesian disease mapping, Biometrical Journal, 10.1002/bimj.201600018, 59, 1, (41-56), (2016).
- Loni Philip Tabb, Lance Ballester, Tony H. Grubesic, The spatio-temporal relationship between alcohol outlets and violence before and after privatization: A natural experiment, Seattle, Wa 2010–2013, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2016.08.003, 19, (115-124), (2016).
- Earl W Duncan, Nicole M White, Kerrie Mengersen, Bayesian spatiotemporal modelling for identifying unusual and unstable trends in mammography utilisation, BMJ Open, 10.1136/bmjopen-2015-010253, 6, 5, (e010253), (2016).
- Parinaz Rashidi, Tiejun Wang, Andrew Skidmore, Hamed Mehdipoor, Roshanak Darvishzadeh, Shadrack Ngene, Anton Vrieling, Albertus G. Toxopeus, Elephant poaching risk assessed using spatial and non-spatial Bayesian models, Ecological Modelling, 10.1016/j.ecolmodel.2016.08.002, 338, (60-68), (2016).
- Ni Dong, Helai Huang, Jaeyoung Lee, Mingyun Gao, Mohamed Abdel-Aty, Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach, Accident Analysis & Prevention, 10.1016/j.aap.2016.04.001, 92, (256-264), (2016).
- Areti Boulieri, Anna Hansell, Marta Blangiardo, Investigating trends in asthma and COPD through multiple data sources: A small area study, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2016.05.004, 19, (28-36), (2016).
- L. Seliske, T. A. Norwood, J. R. McLaughlin, S. Wang, C. Palleschi, E. Holowaty, Estimating micro area behavioural risk factor prevalence from large population-based surveys: a full Bayesian approach, BMC Public Health, 10.1186/s12889-016-3144-4, 16, 1, (2016).
- Gina S. Lovasi, Stephen J. Mooney, Peter Muennig, Charles DiMaggio, Cause and context: place-based approaches to investigate how environments affect mental health, Social Psychiatry and Psychiatric Epidemiology, 10.1007/s00127-016-1300-x, 51, 12, (1571-1579), (2016).
- Long T. Truong, Le-Minh Kieu, Tuan A. Vu, Spatiotemporal and random parameter panel data models of traffic crash fatalities in Vietnam, Accident Analysis & Prevention, 10.1016/j.aap.2016.05.028, 94, (153-161), (2016).
- Abdul-Karim Iddrisu, Yaw Ampem Amoako, Spatial Modeling and Mapping of Tuberculosis Using Bayesian Hierarchical Approaches, Open Journal of Statistics, 10.4236/ojs.2016.63043, 06, 03, (482-513), (2016).
- Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan A. Czerniak, Jeffrey S. Morris, Functional CAR Models for Large Spatially Correlated Functional Datasets, Journal of the American Statistical Association, 10.1080/01621459.2015.1042581, 111, 514, (772-786), (2016).
- Paula Moraga, Martin Kulldorff, Detection of spatial variations in temporal trends with a quadratic function, Statistical Methods in Medical Research, 10.1177/0962280213485312, 25, 4, (1422-1437), (2016).
- Rachel Carroll, Andrew B. Lawson, Christel Faes, Russell S. Kirby, Mehreteab Aregay, Kevin Watjou, Spatio‐temporal Bayesian model selection for disease mapping, Environmetrics, 10.1002/env.2410, 27, 8, (466-478), (2016).
- Sylvia Richardson, Juan J Abellan, Nicky Best, Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK), Statistical Methods in Medical Research, 10.1191/0962280206sm458oa, 15, 4, (385-407), (2016).
- See more




