The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

Communication

Dielectrophoretic Trapping of DNA Origami*

Anton Kuzyk

Corresponding Author

E-mail address:ankuzyk@cc.jyu.fi

Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FIN‐40014 (Finland)

Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FIN‐40014 (Finland) Fax: (+358) 142‐604‐756
Search for more papers by this author
Bernard Yurke

Bell Laboratories, Alcatel‐Lucent, Murray Hill, NJ 07974 (USA)

Present address: Materials Science and Engineering Department, Boise State University, Boise, ID 83725 (USA)

Search for more papers by this author
J. Jussi Toppari

Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FIN‐40014 (Finland)

Search for more papers by this author
Veikko Linko

Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FIN‐40014 (Finland)

Search for more papers by this author
Päivi Törmä

Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FIN‐40014 (Finland)

Department of Engineering Physics, Helsinki University of Technology, P.O. Box 5100 FIN‐02015 HUT (Finland)

Search for more papers by this author
First published: 23 April 2008
Cited by: 61
*

The authors thank P. W. K. Rothemund, E. Winfree, R. Barish, and R. Hariadi for useful discussions and J. Ylänne for help with lab facilities. This work was supported by Academy of Finland (project numbers 118160, 115020, 213362), NSF grant CCF‐0622046, and it was conducted as part of a EURYI scheme awards (see www.esf.org/euryi). A. K. thanks the National Graduate School in Nanoscience and Tekniikan Edistämissäätiö.

First page image

Number of times cited: 61

  • , DNA dielectrophoresis: Theory and applications a review, ELECTROPHORESIS, 38, 11, (1483-1506), (2017).
  • , Oligonucleotide probes functionalization of nanogap electrodes, ELECTROPHORESIS, 38, 21, (2712-2720), (2017).
  • , Interelectrode Stretched Photoelectro-Functional DNA Nanowire, Molecular Architectonics, 10.1007/978-3-319-57096-9_12, (321-339), (2017).
  • , DNA origami structures as calibration standards for nanometrology, Measurement Science and Technology, 28, 3, (034001), (2017).
  • , Alternating current dielectrophoresis of biomacromolecules: The interplay of electrokinetic effects, Sensors and Actuators B: Chemical, 10.1016/j.snb.2017.05.144, 252, (391-408), (2017).
  • , Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions, Applied Physics Letters, 110, 7, (073701), (2017).
  • , Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure, Nano Letters, 10.1021/acs.nanolett.6b02378, 16, 11, (6780-6786), (2016).
  • , Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami‐induced local destruction of silicon dioxide, ELECTROPHORESIS, 36, 2, (255-262), (2014).
  • , Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing, Langmuir, 31, 46, (12823), (2015).
  • , Surface Mobility and Ordered Rearrangement of Immobilized DNA Origami, Langmuir, 31, 44, (12106), (2015).
  • , Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures, Journal of Micromechanics and Microengineering, 25, 3, (035003), (2015).
  • , One-step large-scale deposition of salt-free DNA origami nanostructures, Scientific Reports, 10.1038/srep15634, 5, 1, (2015).
  • , Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis, The Analyst, 10.1039/C5AN00861A, 140, 17, (5821-5848), (2015).
  • , Custom-shaped metal nanostructures based on DNA origami silhouettes, Nanoscale, 10.1039/C5NR02300A, 7, 26, (11267-11272), (2015).
  • , Self‐Assembled Silver Nanoparticles in a Bow‐Tie Antenna Configuration, Small, 10, 6, (1057-1062), (2013).
  • , Molecular Plasmonics for Nanooptics and Nanotechnology, Molecular Plasmonics, (157-168), (2014).
  • , Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces, Nanoscale, 6, 3, (1790), (2014).
  • , Optimized Assembly and Covalent Coupling of Single-Molecule DNA Origami Nanoarrays, ACS Nano, 10.1021/nn506014s, 8, 12, (12030-12040), (2014).
  • , Single Molecule Characterization of DNA Binding and Strand Displacement Reactions on Lithographic DNA Origami Microarrays, Nano Letters, 14, 3, (1627), (2014).
  • , Templated Self-Assembly for Nanolithography and Nanofabrication: Overview and Selected Examples, Nanoscience and Nanoengineering, 10.1201/b16957-19, (225-240), (2014).
  • , Virus-Encapsulated DNA Origami Nanostructures for Cellular Delivery, Nano Letters, 10.1021/nl500677j, 14, 4, (2196-2200), (2014).
  • , Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe, ELECTROPHORESIS, 34, 13, (1922-1930), (2013).
  • , Dielectrophoretic manipulation and solubility of protein nanofibrils formed from crude crystallins, ELECTROPHORESIS, 34, 7, (1105-1112), (2013).
  • , Overview of DNA origami for molecular self‐assembly, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5, 2, (150-162), (2013).
  • , Dielectrophoresis based continuous-flow nano sorter: fast quality control of gene vaccines, Lab on a Chip, 10.1039/c3lc50475a, 13, 15, (3111), (2013).
  • , Nucleic acid nanostructures for biomedical applications, Nanomedicine, 8, 1, (105), (2013).
  • , Six-Helix Bundle and Triangle DNA Origami Insulator-Based Dielectrophoresis, Analytical Chemistry, 10.1021/ac402493u, 85, 23, (11427-11434), (2013).
  • , DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie, 124, 4, (936-939), (2011).
  • , Controlling the Formation of DNA Origami Structures with External Signals, Small, 8, 13, (2016-2020), (2012).
  • , DNA Origami Nanopatterning on Chemically Modified Graphene, Angewandte Chemie International Edition, 51, 4, (912-915), (2011).
  • , Specific and reversible photochemical labeling of plasmid DNA using photoresponsive oligonucleotides containing 3-cyanovinylcarbazole, Mol. BioSyst., 8, 2, (491), (2012).
  • , Tuning direct current streaming dielectrophoresis of proteins, Biomicrofluidics, 10.1063/1.4742695, 6, 3, (034108), (2012).
  • , Materials self-assembly and fabrication in confined spaces, Journal of Materials Chemistry, 10.1039/c2jm16629a, 22, 21, (10389), (2012).
  • , Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami, ACS Nano, 10.1021/nn303767b, 6, 11, (10050-10053), (2012).
  • , Self-assembly of DNA on a gapped carbon nanotube, Journal of Molecular Modeling, 10.1007/s00894-011-1341-8, 18, 7, (3291-3300), (2012).
  • , Fluid streaming above interdigitated electrodes in dielectrophoresis experiments, ELECTROPHORESIS, 32, 18, (2448-2455), (2011).
  • , Dielectrophoresis at the nanoscale, ELECTROPHORESIS, 32, 17, (2307-2313), (2011).
  • , Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device, ELECTROPHORESIS, 32, 17, (2314-2322), (2011).
  • , Assembly of Single‐Walled Carbon Nanotubes on DNA‐Origami Templates through Streptavidin–Biotin Interaction, Small, 7, 6, (746-750), (2011).
  • , Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules, Nanoscale, 10.1039/c1nr10518c, 3, 9, (3788), (2011).
  • , DNA origami: a quantum leap for self-assembly of complex structures, Chemical Society Reviews, 40, 12, (5636), (2011).
  • , Single molecule microscopy methods for the study of DNA origami structures, Microscopy Research and Technique, 74, 7, (688-698), (2010).
  • , Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties, Nanotechnology, 10.1088/0957-4484/22/27/275610, 22, 27, (275610), (2011).
  • , Self‐healing biomaterials, Journal of Biomedical Materials Research Part A, 96A, 2, (492-506), (2010).
  • , Strategy for the Assembly of Carbon Nanotube–Metal Nanoparticle Hybrids Using Biointerfaces, Small, 6, 18, (1992-1995), (2010).
  • , Recent advances in DNA-based directed assembly on surfaces, Nanoscale, 10.1039/c0nr00430h, 2, 12, (2530), (2010).
  • , Dielectrophoretic-activated cell sorter based on curved microelectrodes, Microfluidics and Nanofluidics, 10.1007/s10404-009-0558-7, 9, 2-3, (411-426), (2009).
  • , DNA origami: Fold, stick, and beyond, Nanoscale, 2, 3, (310), (2010).
  • , Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems, Analytical and Bioanalytical Chemistry, 10.1007/s00216-009-2922-6, 396, 1, (401-420), (2009).
  • , A Closer Look at DNA Nanotechnology, IEEE Nanotechnology Magazine, 10.1109/MNANO.2010.938652, 4, 4, (13-17), (2010).
  • , Knitting complex weaves with DNA origami, Current Opinion in Structural Biology, 20, 3, (276), (2010).
  • , Characterization of the Conductance Mechanisms of DNA Origami by AC Impedance Spectroscopy, Small, 5, 21, (2382-2386), (2009).
  • , Field‐Induced Nanolithography for High‐Throughput Pattern Transfer, Small, 5, 23, (2683-2686), (2009).
  • , Controlled Delivery of DNA Origami on Patterned Surfaces, Small, 5, 17, (1942-1946), (2009).
  • , Bioanalytical separations using electric field gradient techniques, ELECTROPHORESIS, 30, 5, (852-865), (2009).
  • , Placement and orientation of individual DNA shapes on lithographically patterned surfaces, Nature Nanotechnology, 4, 9, (557), (2009).
  • , A three-branched DNA template for carbon nanotubeself-assembly into nanodevice configuration, Chem. Commun., 6, (683), (2009).
  • , Dielectric and dielectrophoretic properties of DNA, IET Nanobiotechnology, 10.1049/iet-nbt.2008.0014, 3, 2, (28), (2009).
  • , Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles, Microfluidics and Nanofluidics, 7, 5, (633), (2009).
  • , DNA origami as a nanoscale template for protein assembly, Nanotechnology, 10.1088/0957-4484/20/23/235305, 20, 23, (235305), (2009).
  • , Structural DNA Nanotechnology: From Design to Applications, International Journal of Molecular Sciences, 10.3390/ijms13067149, 13, 12, (7149-7162), (2012).