Characterization of the Conductance Mechanisms of DNA Origami by AC Impedance Spectroscopy*
This work was supported by the Academy of Finland (project numbers 217045, 217041, 213362) and was conducted as part of a EURYI scheme award (see http://www.esf.org/euryi). The authors thank J. Ylänne and M. Vihinen‐Ranta (Nanoscience Center, University of Jyväskylä) for help with biolab facilities. V.L. thanks Finnish Academy of Science and Letters (Väisälä Foundation), and Finnish Cultural Foundation (Central Finland Regional Fund). A.K. thanks the National Graduate School in Nanoscience and Tekniikan Edistämissäätiö.
Abstract
The electrical characteristics of single rectangular DNA origami structures are explored by trapping them via dielectrophoresis between nanoelectrodes (see image) and determining their conductivity mechanisms by AC impedance spectroscopy, combined with a detailed equivalent‐circuit model. The results show that the nature of the DNA origami conductivity is not purely Ohmic but that it is a combination of an ionic diffusion and electronic conductivity.
Number of times cited: 19
- Sami Nummelin, Juhana Kommeri, Mauri A. Kostiainen and Veikko Linko, Evolution of Structural DNA Nanotechnology, Advanced Materials, 30, 24, (2018).
- Minho Yoon, Sung‐Wook Min, Sreekantha Reddy Dugasani, Yong Uk Lee, Min Suk Oh, Thomas D. Anthopoulos, Sung Ha Park and Seongil Im, Charge Transport in 2D DNA Tunnel Junction Diodes, Small, 13, 48, (2017).
- Anna-Leena Kähkönen, Antti Laherto, Anssi Lindell and Suvi Tala, Interdisciplinary Nature of Nanoscience: Implications for Education, Global Perspectives of Nanoscience and Engineering Education, 10.1007/978-3-319-31833-2_2, (35-81), (2016).
- Boxuan Shen, Veikko Linko, Hendrik Dietz and J. Jussi Toppari, Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami‐induced local destruction of silicon dioxide, ELECTROPHORESIS, 36, 2, (255-262), (2014).
- Veikko Linko, Boxuan Shen, Kosti Tapio, J. Jussi Toppari, Mauri A. Kostiainen and Sampo Tuukkanen, One-step large-scale deposition of salt-free DNA origami nanostructures, Scientific Reports, 10.1038/srep15634, 5, 1, (2015).
- Boxuan Shen, Veikko Linko, Kosti Tapio, Mauri A. Kostiainen and J. Jussi Toppari, Custom-shaped metal nanostructures based on DNA origami silhouettes, Nanoscale, 10.1039/C5NR02300A, 7, 26, (11267-11272), (2015).
- Veikko Linko, Marika Eerikäinen and Mauri A. Kostiainen, A modular DNA origami-based enzyme cascade nanoreactor, Chemical Communications, 10.1039/C4CC08472A, 51, 25, (5351-5354), (2015).
- Joona Mikkilä, Antti-Pekka Eskelinen, Elina H. Niemelä, Veikko Linko, Mikko J. Frilander, Päivi Törmä and Mauri A. Kostiainen, Virus-Encapsulated DNA Origami Nanostructures for Cellular Delivery, Nano Letters, 10.1021/nl500677j, 14, 4, (2196-2200), (2014).
- Ishtiaq Saaem and Thomas H. LaBean, Overview of DNA origami for molecular self‐assembly, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5, 2, (150-162), (2013).
- Lin Gan, Tzu-Chiao Chao, Fernanda Camacho-Alanis and Alexandra Ros, Six-Helix Bundle and Triangle DNA Origami Insulator-Based Dielectrophoresis, Analytical Chemistry, 10.1021/ac402493u, 85, 23, (11427-11434), (2013).
- J. Jussi Toppari, Janina Wirth, Frank Garwe, Ondrej Stranik, Andrea Csaki, Joachim Bergmann, Wolfgang Paa and Wolfgang Fritzsche, Plasmonic Coupling and Long-Range Transfer of an Excitation along a DNA Nanowire, ACS Nano, 10.1021/nn304789w, 7, 2, (1291-1298), (2013).
- Alfredo D. Bobadilla and Jorge M. Seminario, Self-assembly of DNA on a gapped carbon nanotube, Journal of Molecular Modeling, 10.1007/s00894-011-1341-8, 18, 7, (3291-3300), (2012).
- Antti‐Pekka Eskelinen, Anton Kuzyk, Toni K. Kaltiaisenaho, Marina Y. Timmermans, Albert G. Nasibulin, Esko I. Kauppinen and Päivi Törmä, Assembly of Single‐Walled Carbon Nanotubes on DNA‐Origami Templates through Streptavidin–Biotin Interaction, Small, 7, 6, (746-750), (2011).
- Anton Kuzyk, Dielectrophoresis at the nanoscale, ELECTROPHORESIS, 32, 17, (2307-2313), (2011).
- Veikko Linko, Jenni Leppiniemi, Boxuan Shen, Einari Niskanen, Vesa P. Hytönen and J. Jussi Toppari, Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules, Nanoscale, 10.1039/c1nr10518c, 3, 9, (3788), (2011).
- Veikko Linko, Jenni Leppiniemi, Seppo-Tapio Paasonen, Vesa P Hytönen and J Jussi Toppari, Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties, Nanotechnology, 10.1088/0957-4484/22/27/275610, 22, 27, (275610), (2011).
- Osamu Tabata, A Closer Look at DNA Nanotechnology, IEEE Nanotechnology Magazine, 10.1109/MNANO.2010.938652, 4, 4, (13-17), (2010).
- Boxuan Shen, Kosti Tapio, Veikko Linko, Mauri Kostiainen and Jari Toppari, Metallic Nanostructures Based on DNA Nanoshapes, Nanomaterials, 10.3390/nano6080146, 6, 8, (146), (2016).
- Li Wang, Yujing Sun, Zhuang Li, Aiguo Wu and Gang Wei, Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures, Materials, 10.3390/ma9010053, 9, 1, (53), (2016).





