Starch Hydrolysate, an Optimal and Economical Source of Carbon for the Secretion of Citric Acid by Yarrowia lipolytica (DS‐1)
Abstract
enUsing Yarrowia lipolytica (DS‐1), secretion of citric acid is studied as a function of carbon sources such as glucose, fructose, hydrol, sucrose, cane sugar molasses, kerosene (all available commercially) and tapioca starch hydrolysate, invert sucrose and invert cane sugar molasses (all prepared in laboratory). On the basis of their acceptability by DS‐1 for citric and isocitric acid secretion, it is concluded that (a) sucrose and cane sugar molasses (with/without inversion) served as poor carbon sources, (b) fructose, hydrol, impure tapioca starch hydrolysate (96 DE w/w) and invert sucrose served as relatively better carbon sources and (c) purified tapioca starch hydrolysate (96 DE w/w) was the best carbon source to substitute glucose by giving comparable (75%) efficiency of conversion and economical advantage.
Abstract
deStärkehydrolysat, eine optimale und wirtschaftliche Kohlenstoffquelle für die Sekretion von Citronensäure durch Yarrowia lipolytica (DS‐1). Unter Verwendung von Yarrowia Lipolytica wurde die Sekretion von Citronensäure als Funktion von Kohlenstoffquellen wie Glucose, Fructose, Hydrol, Saccharose, Rohrzucker‐Melassen, Kerosin (sämtlich im Handel erhältlich) sowie Tapiokastärke‐Hydrolysat invertierte Saccharose und invertierte Rohrzuckermelassen (sämtlich im Laboratorium hergestellt) untersucht. Auf der Grundlage ihrer Akzeptanz durch DS‐1 für Citronen‐ und Isicitronensäuresekretion wird geschlossen, daß (a) Saccharose und Rohrzucker‐Melassen (mit bzw. ohne Inversion) als schwache Kohlenstoffquellen, (b) Fructose, Hydrol, unreines Tapiokastärke‐Hydrolysat (96 DE w/w) und Invertzucker als relativ bessere Kohlenstoffquellen und (c) gereinigtes Tapiokastärke‐Hydrolysat (96 DE w/w) die beste Kohlenstoffquelle war, um eine vergleichbare (75%) Effizienz der Konversion und wirtschaftlichen Vorteil durch Substitution der Glucose zu erhalten.
Number of times cited: 10
- S. Chozhavendhan, R. Praveen Kumar, S. Elavazhagan, B. Barathiraja, M. Jayakumar and Sunita J. Varjani, Utilization of Crude Glycerol from Biodiesel Industry for the Production of Value-Added Bioproducts, Waste to Wealth, 10.1007/978-981-10-7431-8_4, (65-82), (2017).
- Ema Cavallo, Hernán Charreau, Patricia Cerrutti and María Laura Foresti, Yarrowia lipolytica: a model yeast for citric acid production, FEMS Yeast Research, 17, 8, (2017).
- Richa Bafana, Sarvanadevi Sivanesan and R. A. Pandey, Itaconic Acid Production by Filamentous Fungi in Starch-Rich Industrial Residues, Indian Journal of Microbiology, 57, 3, (322), (2017).
- A. K. Yadav, A. B. Chaudhari and R. M. Kothari, Bioconversion of renewable resources into lactic acid: an industrial view, Critical Reviews in Biotechnology, 10.3109/07388550903420970, 31, 1, (1-19), (2010).
- Maria Theron and J Lues, Large-Scale Organic Acid Production, Organic Acids and Food Preservation, 10.1201/9781420078435-8, (165-184), (2010).
- Susana Rodríguez Couto and Ma Ángeles Sanromán, Application of solid-state fermentation to food industry—A review, Journal of Food Engineering, 76, 3, (291), (2006).
- Se-Kwon Kim, Pyo-Jam Park and Hee-Guk Byun, Continuous production of citric acid from dairy wastewater using immobilizedAspergillus niger ATCC 9142, Biotechnology and Bioprocess Engineering, 7, 2, (89), (2002).
- Luciana P.S Vandenberghe, Carlos R Soccol, Ashok Pandey and J.-M Lebeault, Solid-state fermentation for the synthesis of citric acid by Aspergillus niger, Bioresource Technology, 74, 2, (175), (2000).
- Luciana P. S Vandenberghe, Carlos R Soccol, Ashok Pandey and Jean-Michel Lebeault, Microbial production of citric acid, Brazilian Archives of Biology and Technology, 42, 3, (263), (1999).
- Rajesh K. Sharma, Nilesh K. Shah and Raman M. Kothari, Isolation of Sorbitol-6-Phosphate from Hydrogenated Tapioca Starch Hydrolysate, Starch - Starke, 48, 3, (114), (1996).




