Volume 54, Issue 1
Article

Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen

A. Neumaier

75 Karlsruhe 41, Kieselweg 1, BRD

Search for more papers by this author
First published: 1974
Citations: 24

Abstract

de

Der bei einer Summation auftretende Rundungsfehler kann als Maß für die Güte des verwendeten Verfahrens gelten. Im folgenden werden für mehrere Summierungsverfahren, unter anderem für das übliche und das Kahan‐Babuška‐Verfahren, a‐priori‐Schranken für diese Rundungsfehler angegeben und miteinander verglichen.

Abstract

en

The rounding‐error arising during summation can be interpreted as a measure for the quality of the procedure used. In the following, a‐priori‐bounds for this rounding‐error are used to compare several summation procedures, e.g. the common procedure and the method of Kahan‐Babuška.

Number of times cited according to CrossRef: 24

  • mstar – a fast parallelized algorithmically regularized integrator with minimum spanning tree coordinates, Monthly Notices of the Royal Astronomical Society, 10.1093/mnras/staa084, 492, 3, (4131-4148), (2020).
  • Fast, good, and repeatable: Summations, vectorization, and reproducibility, The International Journal of High Performance Computing Applications, 10.1177/1094342020938425, (109434202093842), (2020).
  • Verified inclusions for a nearest matrix of specified rank deficiency via a generalization of Wedin’s $$\sin (\theta )$$ theorem, BIT Numerical Mathematics, 10.1007/s10543-020-00827-y, (2020).
  • undefined, 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), 10.1109/ARITH.2019.00011, (1-14), (2019).
  • Numerical validation of compensated algorithms with stochastic arithmetic, Applied Mathematics and Computation, 10.1016/j.amc.2018.02.004, 329, (339-363), (2018).
  • Design and Implementation of Particle Systems for Meshfree Methods with High Performance, High Performance Parallel Computing [Working Title], 10.5772/intechopen.73629, (2018).
  • Enhanced Floating-Point Sums, Dot Products, and Polynomial Values, Handbook of Floating-Point Arithmetic, 10.1007/978-3-319-76526-6, (163-192), (2018).
  • Studying the Numerical Quality of an Industrial Computing Code: A Case Study on Code_aster, Numerical Software Verification, 10.1007/978-3-319-63501-9_5, (61-80), (2017).
  • On the Robustness of the 2Sum and Fast2Sum Algorithms, ACM Transactions on Mathematical Software, 10.1145/3054947, 44, 1, (1-14), (2017).
  • Gleitkommaarithmetik auf dem Prüfstand, Jahresbericht der Deutschen Mathematiker-Vereinigung, 10.1365/s13291-016-0138-1, 118, 3, (179-226), (2016).
  • Some issues related to double rounding, BIT Numerical Mathematics, 10.1007/s10543-013-0436-2, 53, 4, (897-924), (2013).
  • Accurate solution of dense linear systems, part I: Algorithms in rounding to nearest, Journal of Computational and Applied Mathematics, 10.1016/j.cam.2012.10.010, 242, (157-184), (2013).
  • On Ziv's rounding test, ACM Transactions on Mathematical Software, 10.1145/2491491.2491495, 39, 4, (1-19), (2013).
  • Verified Bounds for Least Squares Problems and Underdetermined Linear Systems, SIAM Journal on Matrix Analysis and Applications, 10.1137/110840248, 33, 1, (130-148), (2012).
  • undefined, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 10.1109/ACSSC.2011.6189977, (165-169), (2011).
  • Verification methods: Rigorous results using floating-point arithmetic, Acta Numerica, 10.1017/S096249291000005X, 19, (287-449), (2010).
  • Fast high precision summation, Nonlinear Theory and Its Applications, IEICE, 10.1587/nolta.1.2, 1, 1, (2-24), (2010).
  • Ultimately Fast Accurate Summation, SIAM Journal on Scientific Computing, 10.1137/080738490, 31, 5, (3466-3502), (2009).
  • Accurate Floating-Point Summation Part II: Sign, K -Fold Faithful and Rounding to Nearest , SIAM Journal on Scientific Computing, 10.1137/07068816X, 31, 2, (1269-1302), (2009).
  • Accurate Floating-Point Summation Part I: Faithful Rounding, SIAM Journal on Scientific Computing, 10.1137/050645671, 31, 1, (189-224), (2008).
  • A Generalized Kahan-Babuška-Summation-Algorithm, Computing, 10.1007/s00607-005-0139-x, 76, 3-4, (279-293), (2005).
  • Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, 10.1137/030601818, 26, 6, (1955-1988), (2005).
  • A New Distillation Algorithm for Floating-Point Summation, SIAM Journal on Scientific Computing, 10.1137/030602009, 26, 6, (2066-2078), (2005).
  • The Accuracy of Floating Point Summation, SIAM Journal on Scientific Computing, 10.1137/0914050, 14, 4, (783-799), (1993).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.