p2: a random effects model with covariates for directed graphs
Abstract
A random effects model is proposed for the analysis of binary dyadic data that represent a social network or directed graph, using nodal and/or dyadic attributes as covariates. The network structure is reflected by modeling the dependence between the relations to and from the same actor or node. Parameter estimates are proposed that are based on an iterated generalized least‐squares procedure. An application is presented to a data set on friendship relations between American lawyers.
Citing Literature
Number of times cited according to CrossRef: 99
- Yi-Hwa Liou, Alan J. Daly, Christopher Downey, Christian Bokhove, Mireia Civís, Jordi Díaz-Gibson, Susana López, Efficacy, explore, and exchange: Studies on social side of teacher education from England, Spain, and US, International Journal of Educational Research, 10.1016/j.ijer.2019.101518, 99, (101518), (2020).
- Bryan S. Graham, Network data, , 10.1016/bs.hoe.2020.05.001, (2020).
- Silvia D'Angelo, Marco Alfò, Thomas Brendan Murphy, Modeling node heterogeneity in latent space models for multidimensional networks, Statistica Neerlandica, 10.1111/stan.12209, 74, 3, (324-341), (2020).
- Federica Bianchi, Francesco Bartolucci, Stefano Peluso, Antonietta Mira, Longitudinal networks of dyadic relationships using latent trajectories: evidence from the European interbank market, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12413, 69, 4, (711-739), (2020).
- Beau Dabbs, Samrachana Adhikari, Tracy Sweet, Conditionally Independent Dyads (CID) network models: A latent variable approach to statistical social network analysis, Social Networks, 10.1016/j.socnet.2020.06.004, 63, (122-133), (2020).
- Min Gon Chung, Kelly Kapsar, Kenneth A. Frank, Jianguo Liu, The spatial and temporal dynamics of global meat trade networks, Scientific Reports, 10.1038/s41598-020-73591-2, 10, 1, (2020).
- Chang Che, Ick Hoon Jin, Zhiyong Zhang, Network Mediation Analysis Using Model-Based Eigenvalue Decomposition, Structural Equation Modeling: A Multidisciplinary Journal, 10.1080/10705511.2020.1721292, (1-14), (2020).
- Emmanuel Lazega, Embarked on social processes (the rivers) in dynamic and multilevel networks (the boats), Connections, 10.21307/connections-2019.013, 40, 1, (60-76), (2020).
- David R. Hunter, A Statistician’s View of Network Modeling, Network Science, 10.1007/978-3-030-26814-5, (23-41), (2019).
- Olivier Gimenez, Lorena Mansilla, M. Javier Klaich, Mariano A. Coscarella, Susana N. Pedraza, Enrique A. Crespo, Inferring animal social networks with imperfect detection, Ecological Modelling, 10.1016/j.ecolmodel.2019.04.001, 401, (69-74), (2019).
- Stephanie M. N. Glegg, Emily Jenkins, Anita Kothari, How the study of networks informs knowledge translation and implementation: a scoping review, Implementation Science, 10.1186/s13012-019-0879-1, 14, 1, (2019).
- Alistair James O’Malley, Jukka-Pekka Onnela, Introduction to Social Network Analysis, Health Services Evaluation, 10.1007/978-1-4939-8715-3_37, (617-660), (2019).
- Tom A.B. Snijders, Alessandro Lomi, Beyond homophily: Incorporating actor variables in statistical network models, Network Science, 10.1017/nws.2018.30, 7, 1, (1-19), (2019).
- Raffaele Vacca, Jeanne-Marie R. Stacciarini, Mark Tranmer, Cross-classified Multilevel Models for Personal Networks: Detecting and Accounting for Overlapping Actors, Sociological Methods & Research, 10.1177/0049124119882450, (004912411988245), (2019).
- Mirko Signorelli, Ernst C. Wit, Model-based clustering for populations of networks, Statistical Modelling, 10.1177/1471082X19871128, (1471082X1987112), (2019).
- Teague R. Henry, Kathleen M. Gates, Mitchell J. Prinstein, Douglas Steinley, Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models, Psychometrika, 10.1007/s11336-019-09685-2, (2019).
- Ting Yan, Binyan Jiang, Stephen E. Fienberg, Chenlei Leng, Statistical Inference in a Directed Network Model With Covariates, Journal of the American Statistical Association, 10.1080/01621459.2018.1448829, 114, 526, (857-868), (2018).
- DANIEL K. SEWELL, Simultaneous and temporal autoregressive network models, Network Science, 10.1017/nws.2017.36, 6, 2, (204-231), (2018).
- Per Block, Johan Koskinen, James Hollway, Christian Steglich, Christoph Stadtfeld, Change we can believe in: Comparing longitudinal network models on consistency, interpretability and predictive power, Social Networks, 10.1016/j.socnet.2017.08.001, 52, (180-191), (2018).
- Viviana Amati, Alessandro Lomi, Antonietta Mira, Social Network Modeling, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-031017-100746, 5, 1, (343-369), (2018).
- Terrence D. Jorgensen, K. Jean Forney, Jeffrey A. Hall, Steven M. Giles, Using modern methods for missing data analysis with the social relations model: A bridge to social network analysis, Social Networks, 10.1016/j.socnet.2017.11.002, 54, (26-40), (2018).
- Shahadat Uddin, Nazim Choudhury, Mahendra Piraveenan, Kon Shing Kenneth Chung, Exploring Actor-Level Dynamics in Longitudinal Networks: The State of the Art, Encyclopedia of Social Network Analysis and Mining, 10.1007/978-1-4939-7131-2, (794-809), (2018).
- Yi-Hwa Liou, Alan J. Daly, The Lead Igniter: A Longitudinal Examination of Influence and Energy Through Networks, Efficacy, and Climate, Educational Administration Quarterly, 10.1177/0013161X18799464, (0013161X1879946), (2018).
- Christophe Boschet, Tina Rambonilaza, Collaborative environmental governance and transaction costs in partnerships: evidence from a social network approach to water management in France, Journal of Environmental Planning and Management, 10.1080/09640568.2017.1290589, 61, 1, (105-123), (2017).
- A. James O’Malley, Jukka-Pekka Onnela, Introduction to Social Network Analysis, Methods in Health Services Research, 10.1007/978-1-4939-6704-9_15-1, (1-44), (2017).
- Shahadat Uddin, Nazim Choudhury, Mahendra Piraveenan, Kon Shing Kenneth Chung, Exploring Actor-Level Dynamics in Longitudinal Networks: The State of the Art, Encyclopedia of Social Network Analysis and Mining, 10.1007/978-1-4614-7163-9, (1-17), (2017).
- Johan Wahlstrom, Isaac Skog, Patricio S. La Rosa, Peter Handel, Arye Nehorai, The $\beta$-Model—Maximum Likelihood, Cramér–Rao Bounds, and Hypothesis Testing, IEEE Transactions on Signal Processing, 10.1109/TSP.2017.2691667, 65, 12, (3234-3246), (2017).
- Mengxiao Zhu, Yoav Bergner, Network Models for Teams with Overlapping Membership, Innovative Assessment of Collaboration, 10.1007/978-3-319-33261-1_19, (303-314), (2017).
- Tom A.B. Snijders, Stochastic Actor-Oriented Models for Network Dynamics, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-060116-054035, 4, 1, (343-363), (2017).
- Bryan S. Graham, An Econometric Model of Network Formation With Degree Heterogeneity, Econometrica, 10.3982/ECTA12679, 85, 4, (1033-1063), (2017).
- Pavel N. Krivitsky, Carter T. Butts, Exponential-family Random Graph Models for Rank-order Relational Data, Sociological Methodology, 10.1177/0081175017692623, 47, 1, (68-112), (2017).
- Danielle O. Dean, Daniel J. Bauer, Mitchell J. Prinstein, Friendship Dissolution Within Social Networks Modeled Through Multilevel Event History Analysis, Multivariate Behavioral Research, 10.1080/00273171.2016.1267605, 52, 3, (271-289), (2017).
- Kent Wickstrøm Jensen, Relational effects on knowledge integration: the differential effects on search and transfer, Knowledge Management Research & Practice, 10.1057/kmrp.2010.4, 8, 2, (146-160), (2017).
- Ebrahim Mazrae Farahani, Reza Baradaran Kazemzadeh, Rassoul Noorossana, Ghazaleh Rahimian, A statistical approach to social network monitoring, Communications in Statistics - Theory and Methods, 10.1080/03610926.2016.1263741, 46, 22, (11272-11288), (2016).
- Tom A. B. Snijders, The Multiple Flavours of Multilevel Issues for Networks, Multilevel Network Analysis for the Social Sciences, 10.1007/978-3-319-24520-1, (15-46), (2016).
- Mei Yin, Lingjiong Zhu, Reciprocity in directed networks, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2015.12.008, 447, (71-84), (2016).
- László Lőrincz, Interethnic dating preferences of Roma and non-Roma secondary school students, Journal of Ethnic and Migration Studies, 10.1080/1369183X.2016.1160769, 42, 13, (2244-2262), (2016).
- Yi-Hwa Liou, Tied to the Common Core, Educational Administration Quarterly, 10.1177/0013161X16664116, 52, 5, (793-840), (2016).
- Tracy M. Sweet, Social Network Methods for the Educational and Psychological Sciences, Educational Psychologist, 10.1080/00461520.2016.1208093, 51, 3-4, (381-394), (2016).
- Alan J. Daly, Yi-Hwa Liou, Chris Brown, Social Red Bull: Exploring Energy Relationships in a School District Leadership Team, Harvard Educational Review, 10.17763/1943-5045-86.3.412, 86, 3, (412-448), (2016).
- Valeria Ivaniushina, Victor Lushin, Daniel Alexandrov, Academic help seeking among Russian minority and non-minority adolescents: A social capital outlook, Learning and Individual Differences, 10.1016/j.lindif.2016.07.016, 50, (283-290), (2016).
- S. Thiemichen, N. Friel, A. Caimo, G. Kauermann, Bayesian exponential random graph models with nodal random effects, Social Networks, 10.1016/j.socnet.2016.01.002, 46, (11-28), (2016).
- Alberto Caimo, Isabella Gollini, Bayesian Computational Algorithms for Social Network Analysis, Computational Network Analysis with R, 10.1002/9783527694365, (63-82), (2016).
- Gerhard G. van de Bunt, Peter Groenewegen, An Actor-Oriented Dynamic Network Approach, Organizational Research Methods, 10.1177/1094428107300203, 10, 3, (463-482), (2016).
- A. James O’Malley, Sudeshna Paul, Using retrospective sampling to estimate models of relationship status in large longitudinal social networks, Computational Statistics & Data Analysis, 10.1016/j.csda.2014.08.001, 82, (35-46), (2015).
- Imane Tamimi, Mohamed El Kamili, undefined, 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM), 10.1109/WINCOM.2015.7381332, (1-5), (2015).
- Nienke M. Moolenaar, Peter J. C. Sleegers, The networked principal, Journal of Educational Administration, 10.1108/JEA-02-2014-0031, 53, 1, (8-39), (2015).
- Sudeshna Paul, Nancy L. Keating, Bruce E. Landon, A. James O’Malley, Reprint of: Results from using a new dyadic-dependence model to analyze sociocentric physician networks, Social Science & Medicine, 10.1016/j.socscimed.2014.08.027, 125, (51-59), (2015).
- Jennifer A. Moore, Ran Xu, Kenneth Frank, Hope Draheim, Kim T. Scribner, Social network analysis of mating patterns in American black bears (Ursus americanus), Molecular Ecology, 10.1111/mec.13290, 24, 15, (4010-4022), (2015).
- James P. Spillane, Megan Hopkins, Tracy M. Sweet, Intra- and Interschool Interactions about Instruction: Exploring the Conditions for Social Capital Development, American Journal of Education, 10.1086/683292, 122, 1, (71-110), (2015).
- Alan J. Daly, Nienke M. Moolenaar, Yi-Hwa Liou, Melissa Tuytens, Miguel del Fresno, Why So Difficult? Exploring Negative Relationships between Educational Leaders: The Role of Trust, Climate, and Efficacy, American Journal of Education, 10.1086/683288, 122, 1, (1-38), (2015).
- Giacomo Negro, Sasha Goodman, Niche Overlap and Discrediting Acts: An Empirical Analysis of Informing in Hollywood, Sociological Science, 10.15195/v2.a15, 2, (308-328), (2015).
- Nienke M. Moolenaar, Alan J. Daly, Peter J. C. Sleegers, Sjoerd Karsten, Social Forces in School Teams, Interpersonal Relationships in Education, 10.1007/978-94-6209-701-8, (159-181), (2014).
- Sudeshna Paul, Nancy L. Keating, Bruce E. Landon, A. James O'Malley, Results from using a new dyadic-dependence model to analyze sociocentric physician networks, Social Science & Medicine, 10.1016/j.socscimed.2014.07.014, 117, (67-75), (2014).
- Zack W. Almquist, Carter T. Butts, Logistic Network Regression for Scalable Analysis of Networks with Joint Edge/Vertex Dynamics, Sociological Methodology, 10.1177/0081175013520159, 44, 1, (273-321), (2014).
- Xiaoye Jiang, Yuan Yao, Han Liu, Leonidas Guibas, Compressive Network Analysis, IEEE Transactions on Automatic Control, 10.1109/TAC.2014.2351712, 59, 11, (2946-2961), (2014).
- Grace S. Chiu, Anton H. Westveld, A statistical social network model for consumption data in trophic food webs, Statistical Methodology, 10.1016/j.stamet.2013.09.001, 17, (139-160), (2014).
- Sanne Smith, Ineke Maas, Frank van Tubergen, Ethnic ingroup friendships in schools: Testing the by-product hypothesis in England, Germany, the Netherlands and Sweden, Social Networks, 10.1016/j.socnet.2014.04.003, 39, (33-45), (2014).
- Michael Schweinberger, Miruna Petrescu-Prahova, Duy Q. Vu, Disaster response on September 11, 2001 through the lens of statistical network analysis, Social Networks, 10.1016/j.socnet.2013.12.001, 37, (42-55), (2014).
- Alessandra Petrucci, Emilia Rocco, Statistical Characterization of the Virtual Water Trade Network, Analysis and Modeling of Complex Data in Behavioral and Social Sciences, 10.1007/978-3-319-06692-9_23, (211-219), (2014).
- Zack W. Almquist, Carter T. Butts, Bayesian Analysis of Dynamic Network Regression with Joint Edge/Vertex Dynamics, Bayesian Inference in the Social Sciences, 10.1002/9781118771051, (1-33), (2014).
- Michael Schweinberger, Random Graphs, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (1-10), (2014).
- Chris Baerveldt, Social Discrimination in Classrooms: The Contribution of a Social Networks Approach to Theory and Methods, and Empirical Evidence, Integration and Inequality in Educational Institutions, 10.1007/978-94-007-6119-3, (211-227), (2013).
- MICHAEL D. WARD, JOHN S. AHLQUIST, ARTURAS ROZENAS, Gravity's Rainbow: A dynamic latent space model for the world trade network, Network Science, 10.1017/nws.2013.1, 1, 1, (95-118), (2013).
- Giacomo Negro, Sasha Goodman, Niche Overlap and Individual Antagonism: An Empirical Analysis of Informing in Hollywood, SSRN Electronic Journal, 10.2139/ssrn.2546894, (2013).
- PETER HOFF, BAILEY FOSDICK, ALEX VOLFOVSKY, KATHERINE STOVEL, Likelihoods for fixed rank nomination networks, Network Science, 10.1017/nws.2013.17, 1, 3, (253-277), (2013).
- Garry Robins, A tutorial on methods for the modeling and analysis of social network data, Journal of Mathematical Psychology, 10.1016/j.jmp.2013.02.001, 57, 6, (261-274), (2013).
- Jan Kleinnijenhuis, Wouter de Nooy, Adjustment of issue positions based on network strategies in an election campaign: A two-mode network autoregression model with cross-nested random effects, Social Networks, 10.1016/j.socnet.2011.03.002, 35, 2, (168-177), (2013).
- A. Caimo, N. Friel, Bayesian model selection for exponential random graph models, Social Networks, 10.1016/j.socnet.2012.10.003, 35, 1, (11-24), (2013).
- Neha Gondal, Paul D. McLean, What makes a network go round? Exploring the structure of a strong component with exponential random graph models, Social Networks, 10.1016/j.socnet.2013.06.004, 35, 4, (499-513), (2013).
- Sajid Yousuf Bhat, Muhammad Abulaish, Analysis and mining of online social networks: emerging trends and challenges, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10.1002/widm.1105, 3, 6, (408-444), (2013).
- H. H. Park, R. K. Rethemeyer, The Politics of Connections: Assessing the Determinants of Social Structure in Policy Networks, Journal of Public Administration Research and Theory, 10.1093/jopart/mus021, 24, 2, (349-379), (2012).
- A. James O'Malley, The analysis of social network data: an exciting frontier for statisticians, Statistics in Medicine, 10.1002/sim.5630, 32, 4, (539-555), (2012).
- Garry Robins, Social Networks, Exponential Random Graph (p *) Models for, Computational Complexity, 10.1007/978-1-4614-1800-9, (2953-2967), (2012).
- Tom A. B. Snijders, Network Analysis, Longitudinal Methods of, Computational Complexity, 10.1007/978-1-4614-1800-9, (2029-2043), (2012).
- James P. Spillane, Chong Min Kim, Kenneth A. Frank, Instructional Advice and Information Providing and Receiving Behavior in Elementary Schools, American Educational Research Journal, 10.3102/0002831212459339, 49, 6, (1112-1145), (2012).
- David R. Hunter, Pavel N. Krivitsky, Michael Schweinberger, Computational Statistical Methods for Social Network Models, Journal of Computational and Graphical Statistics, 10.1080/10618600.2012.732921, 21, 4, (856-882), (2012).
- M. Salter‐Townshend, A. White, I. Gollini, T. B. Murphy, Review of statistical network analysis: models, algorithms, and software, Statistical Analysis and Data Mining: The ASA Data Science Journal, 10.1002/sam.11146, 5, 4, (243-264), (2012).
- Todd C. Honeycutt, Debra A. Strong, Using Social Network Analysis to Predict Early Collaboration Within Health Advocacy Coalitions, American Journal of Evaluation, 10.1177/1098214011424201, 33, 2, (221-239), (2011).
- Wouter de Nooy, Networks of action and events over time. A multilevel discrete-time event history model for longitudinal network data, Social Networks, 10.1016/j.socnet.2010.09.003, 33, 1, (31-40), (2011).
- Tom A.B. Snijders, Statistical Models for Social Networks, Annual Review of Sociology, 10.1146/annurev.soc.012809.102709, 37, 1, (131-153), (2011).
- Alberto Caimo, Nial Friel, Bayesian inference for exponential random graph models, Social Networks, 10.1016/j.socnet.2010.09.004, 33, 1, (41-55), (2011).
- A. James O'Malley, Nicholas A. Christakis, Longitudinal analysis of large social networks: Estimating the effect of health traits on changes in friendship ties, Statistics in Medicine, 10.1002/sim.4190, 30, 9, (950-964), (2011).
- Bonne J. H. Zijlstra, Marijtje A. J. Duijn, Tom A. B. Snijders, MCMC estimation for the p2 network regression model with crossed random effects, British Journal of Mathematical and Statistical Psychology, 10.1348/000711007X255336, 62, 1, (143-166), (2011).
- Svetlana Bulashevska, Alla Bulashevska, Roland Eils, Bayesian statistical modelling of human protein interaction network incorporating protein disorder information, BMC Bioinformatics, 10.1186/1471-2105-11-46, 11, 1, (2010).
- Emmanuel Lazega, Claire Lemercier, Use Mounier, A Spinning top model of formal organization and informal behavior: dynamics of advice networks among judges in a commercial court, European Management Review, 10.1057/palgrave.emr.1500058, 3, 2, (113-122), (2010).
- Pavel N. Krivitsky, Mark S. Handcock, Adrian E. Raftery, Peter D. Hoff, Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models, Social Networks, 10.1016/j.socnet.2009.04.001, 31, 3, (204-213), (2009).
- Lotte Vermeij, Marijtje A.J. van Duijn, Chris Baerveldt, Ethnic segregation in context: Social discrimination among native Dutch pupils and their ethnic minority classmates, Social Networks, 10.1016/j.socnet.2009.06.002, 31, 4, (230-239), (2009).
- Jelle J. Sijtsema, René Veenstra, Siegwart Lindenberg, Christina Salmivalli, Empirical test of bullies' status goals: assessing direct goals, aggression, and prestige, Aggressive Behavior, 10.1002/ab.20282, 35, 1, (57-67), (2008).
- A. James O’Malley, Peter V. Marsden, The analysis of social networks, Health Services and Outcomes Research Methodology, 10.1007/s10742-008-0041-z, 8, 4, (222-269), (2008).
- Nancy L. Keating, John Z. Ayanian, Paul D. Cleary, Peter V. Marsden, Factors Affecting Influential Discussions Among Physicians: A Social Network Analysis of a Primary Care Practice, Journal of General Internal Medicine, 10.1007/s11606-007-0190-8, 22, 6, (794-798), (2007).
- Garry Robins, Pip Pattison, Yuval Kalish, Dean Lusher, An introduction to exponential random graph (p*) models for social networks, Social Networks, 10.1016/j.socnet.2006.08.002, 29, 2, (173-191), (2007).
- Carter T. Butts, , Social Networks, 10.1016/j.socnet.2007.02.001, 29, 4, (603-608), (2007).
- Miranda J. Lubbers, Tom A.B. Snijders, A comparison of various approaches to the exponential random graph model: A reanalysis of 102 student networks in school classes, Social Networks, 10.1016/j.socnet.2007.03.002, 29, 4, (489-507), (2007).
- Bonne J. H. Zijlstra, Marijtje A. J. van Duijn, Tom A. B. Snijders, The Multilevel p2 Model, Methodology, 10.1027/1614-2241.2.1.42, 2, 1, (42-47), (2006).
- Ling Heng Wong, Philippa Pattison, Garry Robins, A spatial model for social networks, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2005.04.029, 360, 1, (99-120), (2006).
- Marijtje A. J. van Duijn, Jeroen K. Vermunt, What Is Special About Social Network Analysis?, Methodology, 10.1027/1614-2241.2.1.2, 2, 1, (2-6), (2006).
- Bonne J. H. Zijlstra, Marijtje A. J. Duijn, Tom A. B. Snijders, Model selection in random effects models for directed graphs using approximated Bayes factors, Statistica Neerlandica, 10.1111/j.1467-9574.2005.00283.x, 59, 1, (107-118), (2005).
- Chris Baerveldt, Marijtje A.J Van Duijn, Lotte Vermeij, Dianne A Van Hemert, Ethnic boundaries and personal choice. Assessing the influence of individual inclinations to choose intra-ethnic relationships on pupils’ networks, Social Networks, 10.1016/j.socnet.2004.01.003, 26, 1, (55-74), (2004).




