The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

Effects of Elevated Atmospheric Carbon Dioxide on Insect‐Plant Interactions

Efectos de Elevados Niveles de Dióxido de Carbono Atmosférico en Interacciones Planta‐Insecto

Carlos E. Coviella

*Department of Entomology , University of California, Riverside, CA 92521, U.S.A., email carlos.coviella@ucr.edu

Search for more papers by this author
John T. Trumble

*Department of Entomology , University of California, Riverside, CA 92521, U.S.A., email carlos.coviella@ucr.edu

Search for more papers by this author
First published: 24 December 2001
Cited by: 160

Abstract

en

Abstract: In the enriched carbon dioxide atmosphere expected in the next century, many species of herbivorous insects will confront less nutritious host plants that will induce both lengthened larval developmental times and greater mortality. The limited data currently available suggest that the effect of increased atmospheric CO2 on herbivory will be not only highly species‐specific but also specific to each insect‐plant system. Several scenarios can be predicted, however: (1) local extinctions will occur; (2) the endangered species status as well as the pest status of some insect species will change; (3) geographic distributions for some insect species will shift with host‐plant ranges; and (4) changes in the population dynamics of affected insect species will influence their interactions with other insects and plants. For insect conservation purposes, it is critical to begin long‐term studies on the effects of enhanced CO2 levels on insect populations. An analysis of the available literature indicates that many orders containing insect species important for ecosystem conservation, and even those important as agricultural or medical pests, have not been examined. Without a major increase in research on this topic, we will be unprepared for the species changes that will occur, we will lose the opportunity to document just how some insects adapt to elevated CO2 levels, and we will lack the information necessary for effective conservation efforts.

Abstract

es

Resúmen: En la atmósfera con elevado CO2 que se espera para el próximo siglo, muchas especies de insectos herbívoros se enfrentarán a plantas hospedadoras de menor calidad nutritiva, las cuales inducirán tiempos de desarrollo larval mas prolongados y mortalidad mas alta. Los limitados datos de que se dispone actualmente, sugieren que el efecto del aumento del CO2 en la herbivoría podría ser no solo altamente especie‐específico, sino tambien específico para cada sistema planta‐insecto. Varios escenarios pueden predecirse: (1) ocurrirán extinciones locales; (2) cambiará la situación de especies en peligro de extinción asi como de especies plaga, de algunas especies de insectos; (3) las distribuciones geográficas de algunas especies de insectos, se verán afectadas por cambios en la distribucion geográfica de sus plantas hospedadoras; y (4) cambios en la dinámica poblacional de las especies de insectos afectadas, modificarán sus interacciones con otros insectos y plantas. Para propósitos de conservación, resulta crítico el incrementar los estudios a largo plazo sobre los efectos de los altos niveles de CO2 sobre las poblaciones de insectos. El análisis de la literatura disponible, indica que muchos de los órdenes que contienen especies de insectos importantes para la conservación de ecosistemas específicos, o aún como plagas de la agricultura o de importancia médica no han sido examinados. Si no se produce un gran aumento en la investigación sobre este tema, no estaremos preparados para los cambios que ocurrirán en muchas especies de insectos, perderemos la oportunidad de documentar los procesos de adaptación de algunos insectos a elevado CO2 y careceremos de la necesaria información para llevar adelante esfuerzos de conservación.

Number of times cited: 160

  • , Elevated CO2 and temperature alter development and food utilization of Spodoptera litura fed on resistant soybean, Journal of Applied Entomology, 142, 1-2, (250-262), (2017).
  • , Aphid suitability for the predatory hoverfly Episyrphus balteatus altered with elevating atmospheric CO2 and sinigrin, Entomological Science, 21, 1, (12-21), (2017).
  • , Insect–plant–pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture, Insect Science, 24, 6, (975-989), (2017).
  • , Effects of elevated CO2 on life‐history traits of three successive generations of rankliniella occidentalis and . intonsa on kidney bean, haseolus vulgaris, Entomologia Experimentalis et Applicata, 165, 1, (50-61), (2017).
  • , Climate and atmospheric change impacts on sap‐feeding herbivores: a mechanistic explanation based on functional groups of primary metabolites, Functional Ecology, 31, 1, (161-171), (2016).
  • , Virus incidence in wheat increases under elevated CO 2 : A 4-year study of yellow dwarf viruses from a free air carbon dioxide facility, Virus Research, 241, (137), (2017).
  • , Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids, Journal of Chemical Ecology, 43, 2, (164), (2017).
  • , Plant–Insect Interactions in a Changing World, Insect-Plant Interactions in a Crop Protection Perspective, 10.1016/bs.abr.2016.09.009, (289-332), (2017).
  • , Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae), Hydrobiologia, 789, 1, (31), (2017).
  • , Mutualism effectiveness of a fungal endophyte in an annual grass is impaired by ozone, Functional Ecology, 30, 2, (226-234), (2015).
  • , Impact of Climate Change on Arthropod Diversity, Arthropod Diversity and Conservation in the Tropics and Sub-tropics, 10.1007/978-981-10-1518-2_1, (1-18), (2016).
  • , Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability, Scientific Reports, 6, 1, (2016).
  • , Grapevine insect pests and their natural enemies in the age of global warming, Journal of Pest Science, 10.1007/s10340-016-0761-8, 89, 2, (313-328), (2016).
  • , Forest Invertebrate Communities and Atmospheric Change, Global Climate Change and Terrestrial Invertebrates, (252-273), (2016).
  • , The responses of a funnel‐web weaving spider, gelena labyrinthica, to elevated CO2 concentration, Entomologia Experimentalis et Applicata, 161, 3, (213-218), (2016).
  • , Arthropod Diversity and Management in Legume-Based Cropping Systems in the Tropics, Economic and Ecological Significance of Arthropods in Diversified Ecosystems, 10.1007/978-981-10-1524-3_11, (223-242), (2016).
  • , Effects of elevated CO2 and temperature on Gynostemma pentaphyllum physiology and bioactive compounds, Journal of Plant Physiology, 196-197, (41), (2016).
  • , Virus infection mediates the effects of elevated CO2 on plants and vectors, Scientific Reports, 6, 1, (2016).
  • , Towards an understanding of how phloem amino acid composition shapes elevated CO2‐induced changes in aphid population dynamics, Ecological Entomology, 40, 3, (247-257), (2015).
  • , Impact of global warming on insects, Archives Of Phytopathology And Plant Protection, 48, 1, (84), (2015).
  • , Effects of elevated CO2on the development and physiological metabolic activities ofNilaparvata lugensin response to the infection ofTrichoderma asperellum, International Journal of Pest Management, 61, 4, (292), (2015).
  • , Direct Effects of Elevated CO2Levels on the Fitness Performance of Asian Corn Borer (Lepidoptera: Crambidae) for Multigenerations, Environmental Entomology, 44, 4, (1250), (2015).
  • , Effects of Soil Nitrogen and Atmospheric Carbon Dioxide onWheat streak mosaic virusand Its Vector (Aceria tosichellaKiefer), Plant Disease, 99, 12, (1803), (2015).
  • , A field experiment with elevated atmospheric CO2-mediated changes to C4 crop-herbivore interactions, Scientific Reports, 5, 1, (2015).
  • , Increased seed consumption by biological control weevil tempers positive CO 2 effect on invasive plant ( Centaurea diffusa ) fitness, Biological Control, 84, (36), (2015).
  • , Agriculture and Land Management, Great Plains Regional Technical Input Report, 10.5822/978-1-61091-510-6_7, (97-113), (2015).
  • , Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?, Environmental Entomology, 10.1093/ee/nvu019, 44, 2, (277-286), (2015).
  • , Upsetting the order: how climate and atmospheric change affects herbivore–enemy interactions, Current Opinion in Insect Science, 5, (66), (2014).
  • , Effect of rearing season, host plants and their interaction on economical traits of tropical tasar silkworm, Antheraea mylitta Drury- an overview, International Journal of Industrial Entomology, 29, 1, (93), (2014).
  • , Effect of climate change on Spodoptera litura Fab. on peanut: A life table approach, Crop Protection, 66, (98), (2014).
  • , Impact of Climate Change on Pest Management and Food Security, Integrated Pest Management, 10.1016/B978-0-12-398529-3.00003-8, (23-36), (2014).
  • , Adaptation of Agricultural and Food Systems to a Changing Climate and Increasing Urbanization, Current Sustainable/Renewable Energy Reports, 1, 2, (43), (2014).
  • , Climate Change Effects on Insects: Implications for Crop Protection and Food Security, Journal of Crop Improvement, 10.1080/15427528.2014.881205, 28, 2, (229-259), (2014).
  • , Aphid and host-plant genotype × genotype interactions under elevated CO2, Ecological Entomology, 39, 3, (309), (2014).
  • , Effects of Elevated Co2Leaf Diets on Gypsy Moth (Lepidoptera: Lymantriidae) Respiration Rates, Environmental Entomology, 42, 3, (503), (2013).
  • , Impact of Climate Change in Eastern Madhya Pradesh, India, Tropical Conservation Science, 10.1177/194008291300600304, 6, 3, (338-364), (2013).
  • , Multi‐factor climate change effects on insect herbivore performance, Ecology and Evolution, 3, 6, (1449-1460), (2013).
  • , Food, Nutrition and Agrobiodiversity Under Global Climate Change, , 10.1016/B978-0-12-407686-0.00001-4, (1-128), (2013).
  • , Climate Change Effects on Insects, Combating Climate Change, 10.1201/b14056-13, (213-236), (2013).
  • , Different effects of climate change on the population dynamics of insects, Applied Entomology and Zoology, 48, 2, (97), (2013).
  • , Impact of elevated CO2 and increased temperature on Japanese beetle herbivory, Insect Science, 20, 4, (513-523), (2012).
  • , Impacts of Atmospheric Change on Tree–Arthropod Interactions, Climate Change, Air Pollution and Global Challenges - Understanding and Perspectives from Forest Research, 10.1016/B978-0-08-098349-3.00011-6, (227-248), (2013).
  • , Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts, The Journal of Agricultural Science, 10.1017/S0021859612000500, 151, 02, (163-188), (2012).
  • , A meta‐analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables, New Phytologist, 194, 2, (321-336), (2012).
  • , Effect of elevated CO2on tropical soda apple and its biological control agentGratiana boliviana(Coleoptera: Chrysomelidae), Biocontrol Science and Technology, 22, 7, (763), (2012).
  • , Adaptation of grain legumes to climate change: a review, Agronomy for Sustainable Development, 32, 1, (31), (2012).
  • , The performance of Brevicoryne brassicae on ornamental cabbages grown in CO2-enriched atmospheres, Journal of Asia-Pacific Entomology, 15, 2, (249), (2012).
  • , Rapid genetic turnover in populations of the insect pest Bemisia tabaci Middle East: Asia Minor 1 in an agricultural landscape, Bulletin of Entomological Research, 102, 05, (539), (2012).
  • , A high-resolution shallow marine record of the Toarcian (Early Jurassic) Oceanic Anoxic Event from the East Midlands Shelf, UK, Palaeogeography, Palaeoclimatology, Palaeoecology, 365-366, (124), (2012).
  • , Impact of Elevated CO2on Tobacco Caterpillar,Spodoptera lituraon Peanut,Arachis hypogea, Journal of Insect Science, 12, 103, (1), (2012).
  • , Influences of elevated CO2 and pest damage on the allocation of plant defense compounds in Bt‐transgenic cotton and enzymatic activity of cotton aphid, Insect Science, 18, 4, (401-408), (2011).
  • , How does atmospheric elevated CO2 affect crop pests and their natural enemies? Case histories from China, Insect Science, 18, 4, (393-400), (2011).
  • , Adapting to crop pest and pathogen risks under a changing climate, Wiley Interdisciplinary Reviews: Climate Change, 2, 2, (220-237), (2011).
  • , Growth responses of gypsy moth larvae to elevated CO2: the influence of methods of insect rearing, Insect Science, 18, 4, (409-418), (2011).
  • , Impacts of elevated CO2 on expression of plant defensive compounds in Bt‐transgenic cotton in response to infestation by cotton bollworm, Agricultural and Forest Entomology, 13, 1, (77-82), (2010).
  • , Effects of elevated CO2 and transgenic Bt rice on yeast‐like endosymbiote and its host brown planthopper, Journal of Applied Entomology, 135, 5, (333-342), (2011).
  • , How do aphids respond to elevated CO2?, Journal of Asia-Pacific Entomology, 14, 2, (217), (2011).
  • , Temporal allocation of metabolic tolerance to transgenic Bt cotton in beet armyworm, Spodoptera exigua (Hübner), Science China Life Sciences, 54, 2, (152), (2011).
  • , Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop–vector–virus pathosystem, Agriculture, Ecosystems & Environment, 144, 1, (405), (2011).
  • , Performance of the legume-feeding herbivore, Colias philodice (Lepidoptera: Pieridae) is not Affected by Elevated CO2, Arthropod-Plant Interactions, 5, 2, (107), (2011).
  • , Impacts of global warming on Nezara viridula and its native congeneric species, Journal of Asia-Pacific Entomology, 14, 2, (221), (2011).
  • , The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management?, Annals of Applied Biology, 158, 1, (26-54), (2010).
  • , Stressing food plants by altering water availability affects grasshopper performance, Ecosphere, 2, 7, (1-13), (2011).
  • , Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance, Agricultural and Forest Entomology, 12, 3, (267-276), (2010).
  • , Elevated CO2 lessens predation of Chrysopa sinica on Aphis gossypii, Entomologia Experimentalis et Applicata, 135, 2, (135-140), (2010).
  • , Do elevated atmospheric CO2 and O3 affect food quality and performance of folivorous insects on silver birch?, Global Change Biology, 16, 3, (918-935), (2009).
  • , Temporal biodiversity change in transformed landscapes: a southern African perspective, Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 1558, (3729), (2010).
  • , Performance of the invasive weevil Polydrusus sericeus is influenced by atmospheric CO2 and host species, Agricultural and Forest Entomology, 12, 3, (285-292), (2010).
  • , Activities of digestive and detoxification enzymes in multiple generations of beet armyworm, Spodoptera exigua (Hübner), in response to transgenic Bt cotton, Journal of Pest Science, 83, 4, (453), (2010).
  • , The impacts of rising CO2 concentrations on Australian terrestrial species and ecosystems, Austral Ecology, 35, 6, (665-684), (2010).
  • , Plant allocation to defensive compounds of transgenic Bt cotton in response to infestation by cotton bollworm under conditions of elevated CO2, International Journal of Pest Management, 56, 2, (81), (2010).
  • , Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics, Journal of Chemical Ecology, 36, 1, (2), (2010).
  • , Linking precipitation and C3–C4 plant production to resource dynamics in higher‐trophic‐level consumers, Ecology, 91, 6, (1628-1638), (2010).
  • , Leaf miner activity and its effects on leaf chemistry in adult beech under elevated CO2, Basic and Applied Ecology, 11, 3, (251), (2010).
  • , Elevated air temperature alters an old‐field insect community in a multifactor climate change experiment, Global Change Biology, 15, 4, (930-942), (2008).
  • , Effects of elevated CO2on feeding preference and performance of the gypsy moth (Lymantria dispar) larvae, Journal of Applied Entomology, 133, 1, (47), (2009).
  • , Elevated CO2 Changes Interspecific Competition Among Three Species of Wheat Aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum, Environmental Entomology, 38, 1, (26), (2009).
  • , Elevated carbon dioxide concentrations indirectly affect plant fitness by altering plant tolerance to herbivory, Oecologia, 161, 2, (401), (2009).
  • , Climate change will exacerbate California's insect pest problems, California Agriculture, 63, 2, (73), (2009).
  • , How do the consumption and development rates of the conifer specialist Aphidecta obliterata respond to temperature, and is it better adapted to limited prey than a generalist?, Annals of Applied Biology, 153, 1, (63-71), (2008).
  • , Will climate change be beneficial or detrimental to the invasive swede midge in North America? Contrasting predictions using climate projections from different general circulation models, Global Change Biology, 14, 8, (1721-1733), (2008).
  • , DIRECT AND INDIRECT EFFECTS OF CO2, NITROGEN, AND COMMUNITY DIVERSITY ON PLANT–ENEMY INTERACTIONS, Ecology, 89, 1, (226-236), (2008).
  • , Discriminating tastes: self‐selection of macronutrients in two populations of grasshoppers, Physiological Entomology, 33, 3, (264-273), (2008).
  • , Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition, Insect Conservation and Diversity, 1, 4, (233-241), (2008).
  • , Effects of 4years of CO2 enrichment on the abundance of leaf-galls and leaf-mines in mature oaks, Acta Oecologica, 34, 2, (139), (2008).
  • , Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica), Plant, Cell & Environment, 31, 4, (419-434), (2008).
  • , Interactive Effects of Elevated Co2 and Cotton Cultivar on Tri-Trophic Interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica, Environmental Entomology, 37, 1, (29), (2008).
  • , N availability does not modify plant-mediated responses of Trichoplusia ni to elevated CO2, Journal of Plant Ecology, 1, 3, (187), (2008).
  • , Interactive Effects of Elevated CO2 and Cotton Cultivar on Tri-Trophic Interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica, Environmental Entomology, 37, 1, (29), (2008).
  • , Potential impact of climate change and reindeer density on tundra indicator species in the Barents Sea region, Climatic Change, 87, 1-2, (119), (2008).
  • , Potential effects of elevated carbon dioxide on leaf-feeding forest insects, Frontiers of Biology in China, 3, 1, (68), (2008).
  • , Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world, Proceedings of the National Academy of Sciences, 105, 6, (1781), (2008).
  • , Projected change in climate thresholds in the Northeastern U.S.: implications for crops, pests, livestock, and farmers, Mitigation and Adaptation Strategies for Global Change, 13, 5-6, (555), (2008).
  • , Effects of pollutants on bottom-up and top-down processes in insect–plant interactions, Environmental Pollution, 156, 1, (1), (2008).
  • , Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem, Arthropod-Plant Interactions, 2, 3, (125), (2008).
  • , Effects of elevated CO2 on an insect omnivore: A test for nutritional effects mediated by host plants and prey, Agriculture, Ecosystems & Environment, 123, 4, (271), (2008).
  • , Roles and Effects of Environmental Carbon Dioxide in Insect Life, Annual Review of Entomology, 53, 1, (161), (2008).
  • , Strong ecological but weak evolutionary effects of elevated CO2 on a recombinant inbred population of Arabidopsis thaliana, New Phytologist, 175, 2, (351-362), (2007).
  • , Are legume‐feeding herbivores buffered against direct effects of elevated carbon dioxide on host plants? A test with the sulfur butterfly, Colias philodice, Global Change Biology, 13, 10, (2045-2051), (2007).
  • , Including species interactions in risk assessments for global change, Global Change Biology, 13, 9, (1843-1859), (2007).
  • , Spruce budworm (Choristoneura spp.) biotype reactions to forest and climate characteristics, Global Change Biology, 13, 8, (1630-1643), (2007).
  • , Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore, Global Change Biology, 13, 5, (1005-1015), (2007).
  • , Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan, Ecological Research, 22, 3, (475), (2007).
  • , Impact of elevated CO2on the third trophic level: A predatorHarmonia axyridisand a parasitoidAphidius picipes, Biocontrol Science and Technology, 17, 3, (313), (2007).
  • , Stable isotopes, ecological integration and environmental change: wolves record atmospheric carbon isotope trend better than tree rings, Proceedings of the Royal Society B: Biological Sciences, 274, 1624, (2471), (2007).
  • , Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore, Global Change Biology, 0, 0, (070621084512029), (2007).
  • , Effects of Elevated Carbon Dioxide on the Growth and Foliar Chemistry of Transgenic Bt Cotton, Journal of Integrative Plant Biology, 49, 9, (1361-1369), (2007).
  • , Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima, Biochemical Systematics and Ecology, 35, 3, (121), (2007).
  • , Foliage of Oaks Grown Under Elevated CO2 Reduces Performance of Antheraea polyphemus (Lepidoptera: Saturniidae), Environmental Entomology, 36, 3, (609), (2007).
  • , Plant photosynthetic production as controlled by leaf growth, phenology, and behavior, Photosynthetica, 45, 3, (321), (2007).
  • , Foliage of Oaks Grown Under Elevated Co2 Reduces Performance of Antheraea polyphemus (Lepidoptera: Saturniidae), Environmental Entomology, 36, 3, (609), (2007).
  • , Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis, Global Change Biology, 12, 1, (27-41), (2005).
  • , Trophic Interactions and Climate Change, Agroecosystems in a Changing Climate, 10.1201/9781420003826.ch10, (231-259), (2009).
  • , Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2, Environmental and Experimental Botany, 56, 1, (10), (2006).
  • , Species and community responses to short‐term climate manipulation: Microarthropods in the sub‐Antarctic, Austral Ecology, 31, 6, (719-731), (2006).
  • , Special feature: global climate change and the dynamics of biological communities, Population Ecology, 48, 1, (3), (2006).
  • , Physiological Diversity in Insects: Ecological and Evolutionary Contexts, Advances in Insect Physiology Volume 33, 10.1016/S0065-2806(06)33002-0, (50-152), (2006).
  • , Elevated CO2levels and herbivore damage alter host plant preferences, Oikos, 112, 1, (63), (2006).
  • , Host‐specific aphid population responses to elevated CO2 and increased N availability, Global Change Biology, 11, 11, (1997-2008), (2005).
  • , Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths, Global Change Biology, 11, 8, (1272-1282), (2005).
  • , Elevated CO2 reduces leaf damage by insect herbivores in a forest community, New Phytologist, 167, 1, (207-218), (2005).
  • , Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm, Entomologia Experimentalis et Applicata, 115, 2, (341-350), (2005).
  • , Altered genotypic and phenotypic frequencies of aphid populations under enriched CO2 and O3 atmospheres, Global Change Biology, 11, 11, (1990-1996), (2005).
  • , Climate change and the fate of cereal aphids in Southern Britain, Global Change Biology, 11, 6, (940-944), (2005).
  • , Effects of climate change on parasitic plants: the root hemiparasiticOrobanchaceae, Folia Geobotanica, 40, 2-3, (205), (2005).
  • , Effects of CO2-altered detritus on growth and chemically mediated decisions in crayfish (Procambarus clarkii), Journal of the North American Benthological Society, 24, 2, (330), (2005).
  • , Anthropogenic Changes in Tropospheric Composition Increase Susceptibility of Soybean to Insect Herbivory, Environmental Entomology, 34, 2, (479), (2005).
  • , Impact of Elevated Co2on Tri-Trophic Interaction ofGossypium hirsutum,Aphis gossypii, andLeis axyridis, Environmental Entomology, 34, 1, (37), (2005).
  • , Divergent pheromone‐mediated insect behaviour under global atmospheric change, Global Change Biology, 10, 10, (1820-1824), (2004).
  • , Climate change and cereal aphids: the relative effects of increasing CO2 and temperature on aphid population dynamics, Global Change Biology, 10, 1, (5-15), (2003).
  • , Elevated CO2 alters birch resistance to Lagomorpha herbivores, Global Change Biology, 10, 8, (1402-1413), (2004).
  • , Tritrophic interactions in the context of climate change: a model of grasses, cereal Aphids and their parasitoids, Global Change Biology, 10, 7, (1197-1208), (2004).
  • , Aphid individual performance may not predict population responses to elevated CO2 or O3, Global Change Biology, 10, 8, (1414-1423), (2004).
  • , Gypsy moth feeding in the canopy of a CO2‐enriched mature forest, Global Change Biology, 10, 11, (1899-1908), (2004).
  • , Impact of Global Change on Biological Processes in Soil, Journal of Crop Improvement, 12, 1-2, (289), (2004).
  • , Transgenerational phenotypic plasticity under future atmospheric conditions, Ecology Letters, 7, 10, (941-946), (2004).
  • , Influence of elevated CO2, nitrogen, and Pinus elliottii genotypes on performance of the redheaded pine sawfly, Neodiprion lecontei, Canadian Journal of Forest Research, 34, 5, (1007), (2004).
  • , Effects of elevated CO2, nitrogen and fungal endophyte‐infection on tall fescue: growth, photosynthesis, chemical composition and digestibility, Global Change Biology, 9, 3, (425-437), (2003).
  • , Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3, Agricultural and Forest Entomology, 5, 1, (17-26), (2003).
  • , Effects of elevated CO2 on development and larval food‐plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae), Global Change Biology, 9, 1, (74-83), (2002).
  • , Effects of elevated CO2 and temperature on development and consumption rates of Octotoma championi and O. scabripennis feeding on Lantana camara, Entomologia Experimentalis et Applicata, 108, 3, (169-178), (2003).
  • , How predictable are aphid population responses to elevated CO2?, Journal of Animal Ecology, 72, 4, (556-566), (2003).
  • , Influence of Elevated Carbon Dioxide on Interactions BetweenFrankliniella occidentalisandTrifolium repens, Environmental Entomology, 32, 3, (421), (2003).
  • , Influence of elevated CO2 on interspecific interactions at higher trophic levels, Global Change Biology, 8, 7, (668-678), (2002).
  • , IN SITU DEVELOPMENT OF A SATYRID BUTTERFLY ON CALCAREOUS GRASSLAND EXPOSED TO ELEVATED CARBON DIOXIDE, Ecology, 83, 5, (1399-1411), (2002).
  • , REDUCED LIGHT INCREASES HERBIVORE PRODUCTION DUE TO STOICHIOMETRIC EFFECTS OF LIGHT/NUTRIENT BALANCE, Ecology, 83, 3, (619-627), (2002).
  • , Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus, Ecological Entomology, 27, 3, (271-278), (2002).
  • , Plant reproduction under elevated CO2 conditions: a meta‐analysis of reports on 79 crop and wild species, New Phytologist, 156, 1, (9-26), (2002).
  • , Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs, Global Change Biology, 8, 2, (163-170), (2002).
  • , Interactive effects of elevated CO2 and temperature on the leaf‐miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae), Global Change Biology, 8, 2, (142-152), (2002).
  • , Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change, Global Change Biology, 8, 10, (954-971), (2002).
  • , Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient recycling, Ecology Letters, 5, 2, (177-185), (2002).
  • , Species-specific reactions to elevated CO2 and nutrient availability in four grass species, Basic and Applied Ecology, 3, 3, (221), (2002).
  • , Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates, Global Change Biology, 8, 7, (658-667), (2002).
  • , Climate change impacts on insect management and conservation in temperate regions: can they be predicted?, Agricultural and Forest Entomology, 3, 4, (233-240), (2001).
  • , Effects of elevated atmospheric carbon dioxide on insect–plant interactions, Agricultural and Forest Entomology, 3, 3, (153-159), (2001).
  • , Co2and O3Effects on Paper Birch (Betulaceae:Betula papyrifera) Phytochemistry and Whitemarked Tussock Moth (Lymantriidae:Orgyia leucostigma) Performance, Environmental Entomology, 30, 6, (1119), (2001).
  • , Net grassland carbon flux over a subambient to superambient CO2 gradient, Global Change Biology, 7, 7, (747), (2001).
  • , References, Crop Responses to Environment, 10.1201/9781420041088.bmatt, (2010).
  • , , (2000)., Crop Responses to Environment