Mixtures of multivariate power exponential distributions
Summary
An expanded family of mixtures of multivariate power exponential distributions is introduced. While fitting heavy‐tails and skewness have received much attention in the model‐based clustering literature recently, we investigate the use of a distribution that can deal with both varying tail‐weight and peakedness of data. A family of parsimonious models is proposed using an eigen‐decomposition of the scale matrix. A generalized expectation–maximization algorithm is presented that combines convex optimization via a minorization–maximization approach and optimization based on accelerated line search algorithms on the Stiefel manifold. Lastly, the utility of this family of models is illustrated using both toy and benchmark data.
Citing Literature
Number of times cited according to CrossRef: 24
- Michael P. B. Gallaugher, Paul D. McNicholas, Parsimonious Mixtures of Matrix Variate Bilinear Factor Analyzers, Advanced Studies in Behaviormetrics and Data Science, 10.1007/978-981-15-2700-5_11, (177-196), (2020).
- Yu-Chen Yang, Tsung-I Lin, Luis M. Castro, Wan-Lun Wang, Extending finite mixtures of linear mixed-effects models with concomitant covariates , Computational Statistics & Data Analysis, 10.1016/j.csda.2020.106961, (106961), (2020).
- Cristina Tortora, Paul D. McNicholas, Francesco Palumbo, A Probabilistic Distance Clustering Algorithm Using Gaussian and Student-t Multivariate Density Distributions, SN Computer Science, 10.1007/s42979-020-0067-z, 1, 2, (2020).
- Paolo Giordani, Maria Brigida Ferraro, Francesca Martella, Paolo Giordani, Maria Brigida Ferraro, Francesca Martella, Issues in Gaussian Model-Based Clustering, An Introduction to Clustering with R, 10.1007/978-981-13-0553-5_7, (291-340), (2020).
- Salvatore D. Tomarchio, Antonio Punzo, Luca Bagnato, Two new matrix-variate distributions with application in model-based clustering, Computational Statistics & Data Analysis, 10.1016/j.csda.2020.107050, (107050), (2020).
- Sanjeena Subedi, Paul D. McNicholas, A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting, Journal of Classification, 10.1007/s00357-019-09351-3, (2020).
- Luis Angel García-Escudero, Agustín Mayo-Iscar, Marco Riani, Model-based clustering with determinant-and-shape constraint, Statistics and Computing, 10.1007/s11222-020-09950-w, (2020).
- Yuhong Wei, Yang Tang, Paul D. McNicholas, Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.08.016, 130, (18-41), (2019).
- Alessio Farcomeni, Antonio Punzo, Robust model-based clustering with mild and gross outliers, TEST, 10.1007/s11749-019-00693-z, (2019).
- Antonio Punzo, Cristina Tortora, Multiple scaled contaminated normal distribution and its application in clustering, Statistical Modelling, 10.1177/1471082X19890935, (1471082X1989093), (2019).
- Michael P. B. Gallaugher, Paul D. McNicholas, Mixtures of skewed matrix variate bilinear factor analyzers, Advances in Data Analysis and Classification, 10.1007/s11634-019-00377-4, (2019).
- Johannes Blömer, Sascha Brauer, Kathrin Bujna, Daniel Kuntze, How well do SEM algorithms imitate EM algorithms? A non-asymptotic analysis for mixture models, Advances in Data Analysis and Classification, 10.1007/s11634-019-00366-7, (2019).
- Katherine Morris, Antonio Punzo, Paul D. McNicholas, Ryan P. Browne, Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.12.001, (2018).
- Michael P.B. Gallaugher, Paul D. McNicholas, Finite mixtures of skewed matrix variate distributions, Pattern Recognition, 10.1016/j.patcog.2018.02.025, 80, (83-93), (2018).
- Michael P. B. Gallaugher, Paul D. McNicholas, On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution, Journal of Classification, 10.1007/s00357-018-9280-z, (2018).
- Wolf-Dieter Richter, Statistical reasoning in dependent p-generalized elliptically contoured distributions and beyond, Journal of Statistical Distributions and Applications, 10.1186/s40488-017-0074-3, 4, 1, (2017).
- Utkarsh J. Dang, Antonio Punzo, Paul D. McNicholas, Salvatore Ingrassia, Ryan P. Browne, Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models, Journal of Classification, 10.1007/s00357-017-9221-2, 34, 1, (4-34), (2017).
- Sharon M. McNicholas, Paul D. McNicholas, Ryan P. Browne, A Mixture of Variance-Gamma Factor Analyzers, Big and Complex Data Analysis, 10.1007/978-3-319-41573-4_18, (369-385), (2017).
- Angelo Mazza, Antonio Punzo, Mixtures of multivariate contaminated normal regression models, Statistical Papers, 10.1007/s00362-017-0964-y, (2017).
- Luca Bagnato, Antonio Punzo, Maria G. Zoia, The multivariate leptokurtic‐normal distribution and its application in model‐based clustering, Canadian Journal of Statistics, 10.1002/cjs.11308, 45, 1, (95-119), (2016).
- Paul D. McNicholas, References, Mixture Model-Based Classification, 10.1201/9781315373577, (181-204), (2016).
- Paul D. McNicholas, Model-Based Clustering, Journal of Classification, 10.1007/s00357-016-9211-9, 33, 3, (331-373), (2016).
- Katherine Morris, Paul D. McNicholas, Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures, Computational Statistics & Data Analysis, 10.1016/j.csda.2015.10.008, 97, (133-150), (2016).
- Eckhard Liebscher, Wolf-Dieter Richter, Estimation of Star-Shaped Distributions, Risks, 10.3390/risks4040044, 4, 4, (44), (2016).




