Maximum Likelihood Analysis for Heteroscedastic One‐Way Random Effects ANOVA in Interlaboratory Studies
Abstract
Summary. This article presents results for the maximum likelihood analysis of several groups of measurements made on the same quantity. Following Cochran (1937, Journal of the Royal Statistical Society4(Supple), 102–118; 1954, Biometrics10, 101–129; 1980, in Proceedings of the 25th Conference on the Design of Experiments in Army Research, Development and Testing, 21–33) and others, this problem is formulated as a one‐way unbalanced random‐effects ANOVA with unequal within‐group variances. A reparametrization of the likelihood leads to simplified computations, easier identification and interpretation of multimodality of the likelihood, and (through a non‐informative‐prior Bayesian approach) approximate confidence regions for the mean and between‐group variance.
Citing Literature
Number of times cited according to CrossRef: 40
- Haben Michael, Suzanne Thornton, Minge Xie, Lu Tian, Exact inference on the random‐effects model for meta‐analyses with few studies, Biometrics, 10.1111/biom.12998, 75, 2, (485-493), (2019).
- Ludwig A. Hothorn, Statistics of Interlaboratory In Vitro Toxicological Studies , Alternatives to Laboratory Animals, 10.1177/026119290303101s03, 31, 1_suppl, (43-63), (2019).
- John A. Bowden, Alan Heckert, Candice Z. Ulmer, Christina M. Jones, Jeremy P. Koelmel, Laila Abdullah, Linda Ahonen, Yazen Alnouti, Aaron M. Armando, John M. Asara, Takeshi Bamba, John R. Barr, Jonas Bergquist, Christoph H. Borchers, Joost Brandsma, Susanne B. Breitkopf, Tomas Cajka, Amaury Cazenave-Gassiot, Antonio Checa, Michelle A. Cinel, Romain A. Colas, Serge Cremers, Edward A. Dennis, James E. Evans, Alexander Fauland, Oliver Fiehn, Michael S. Gardner, Timothy J. Garrett, Katherine H. Gotlinger, Jun Han, Yingying Huang, Aveline Huipeng Neo, Tuulia Hyötyläinen, Yoshihiro Izumi, Hongfeng Jiang, Houli Jiang, Jiang Jiang, Maureen Kachman, Reiko Kiyonami, Kristaps Klavins, Christian Klose, Harald C. Köfeler, Johan Kolmert, Therese Koal, Grielof Koster, Zsuzsanna Kuklenyik, Irwin J. Kurland, Michael Leadley, Karen Lin, Krishna Rao Maddipati, Danielle McDougall, Peter J. Meikle, Natalie A. Mellett, Cian Monnin, M. Arthur Moseley, Renu Nandakumar, Matej Oresic, Rainey Patterson, David Peake, Jason S. Pierce, Martin Post, Anthony D. Postle, Rebecca Pugh, Yunping Qiu, Oswald Quehenberger, Parsram Ramrup, Jon Rees, Barbara Rembiesa, Denis Reynaud, Mary R. Roth, Susanne Sales, Kai Schuhmann, Michal Laniado Schwartzman, Charles N. Serhan, Andrej Shevchenko, Stephen E. Somerville, Lisa St. John-Williams, Michal A. Surma, Hiroaki Takeda, Rhishikesh Thakare, J. Will Thompson, Federico Torta, Alexander Triebl, Martin Trötzmüller, S. J. Kumari Ubhayasekera, Dajana Vuckovic, Jacquelyn M. Weir, Ruth Welti, Markus R. Wenk, Craig E. Wheelock, Libin Yao, Min Yuan, Xueqing Heather Zhao, Senlin Zhou, Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma, Journal of Lipid Research, 10.1194/jlr.M079012, 58, 12, (2275-2288), (2017).
- Amanda Koepke, Thomas Lafarge, Antonio Possolo, Blaza Toman, Consensus building for interlaboratory studies, key comparisons, and meta-analysis, Metrologia, 10.1088/1681-7575/aa6c0e, 54, 3, (S34-S62), (2017).
- Quanhui Mei, Jingjing Qu, Interleukin-13 +2044 G/A and +1923C/T polymorphisms are associated with asthma susceptibility in Asians, Medicine, 10.1097/MD.0000000000009203, 96, 51, (e9203), (2017).
- Tom Burr, Brian Williams, Stephen Croft, Morgan White, Ken Hanson, Meta-Analysis Options for Inconsistent Nuclear Measurements, Nuclear Science and Engineering, 10.13182/NSE11-112, 173, 1, (15-27), (2017).
- Laura Ventura, Walter Racugno, Pseudo-Likelihoods for Bayesian Inference, Topics on Methodological and Applied Statistical Inference, 10.1007/978-3-319-44093-4, (205-220), (2016).
- Ruggero Bellio, Annamaria Guolo, Integrated Likelihood Inference in Small Sample Meta‐analysis for Continuous Outcomes, Scandinavian Journal of Statistics, 10.1111/sjos.12172, 43, 1, (191-201), (2015).
- Alan Herschtal, Farshad Foroudi, Tomas Kron, Kerrie Mengersen, A Comparison of Bayesian Models of Heteroscedasticity in Nested Normal Data, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2014.936467, 45, 8, (2947-2964), (2015).
- Andrew L. Rukhin, Confidence Regions and Intervals for Meta-Analysis Model Parameters, Technometrics, 10.1080/00401706.2014.962707, 57, 4, (547-558), (2015).
- Liwen Xu, Fangqin Yang, Ranran Chen, Shenghua Yu, A Parametric Bootstrap Test for Two-Way ANOVA Model Without Interaction Under Heteroscedasticity, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2013.818689, 44, 5, (1264-1272), (2014).
- Zhengjun Kang, Yuhui Li, Xiaokai He, Tao Jiu, Jinxing Wei, Fengyan Tian, Chaohui Gu, Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and cancer risk: evidence based on 45,816 subjects, Tumor Biology, 10.1007/s13277-014-1822-3, 35, 7, (6271-6282), (2014).
- William F. Guthrie, Interlaboratory Comparisons, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
- Mark G. Vangel, Interlaboratory Studies, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
- Zhen Hu, Xueying Hu, Jianxiong Long, Li Su, Bo Wei, XRCC1 polymorphisms and differentiated thyroid carcinoma risk: A meta-analysis, Gene, 10.1016/j.gene.2013.07.005, 528, 2, (67-73), (2013).
- Clemens Elster, Blaza Toman, Analysis of key comparison data: critical assessment of elements of current practice with suggested improvements, Metrologia, 10.1088/0026-1394/50/5/549, 50, 5, (549-555), (2013).
- B.E. Zimmerman, T. Altzitzoglou, A. Antohe, A. Arinc, E. Bakhshandeiar, D.E. Bergeron, L. Bignell, C. Bobin, M. Capogni, J.T. Cessna, M.L. Cozzella, C.J. da Silva, P. De Felice, M.S. Dias, T. Dziel, A. Fazio, R. Fitzgerald, A. Iwahara, F. Jaubert, L. Johansson, J. Keightley, M.F. Koskinas, K. Kossert, J. Lubbe, A. Luca, L. Mo, O. Nähle, O. Ott, J. Paepen, S. Pommé, M. Sahagia, B.R.S. Simpson, F.F.V. Silva, R. van Ammel, M.J. van Staden, W.M. van Wyngaardt, I.M. Yamazaki, Results of an international comparison for the activity measurement of 177Lu, Applied Radiation and Isotopes, 10.1016/j.apradiso.2012.02.014, 70, 9, (1825-1830), (2012).
- Barbora Arendacká, A note on fiducial generalized pivots for in one-way heteroscedastic ANOVA with random effects, Statistics, 10.1080/02331888.2010.540669, 46, 4, (489-504), (2011).
- Gaurav Sharma, Thomas Mathew, Higher order inference for the consensus mean in inter‐laboratory studies, Biometrical Journal, 10.1002/bimj.201000032, 53, 1, (128-136), (2010).
- C M Wang, Hari K Iyer, On multiple-method studies, Metrologia, 10.1088/0026-1394/47/6/002, 47, 6, (642-645), (2010).
- Thomas Mathew, Tatjana Nahtman, Dietrich von Rosen, Bimal Kumar Sinha, Non-negative estimation of variance components in heteroscedastic one-way random-effects ANOVA models, Statistics, 10.1080/02331880903237106, 44, 6, (557-569), (2010).
- Andrew L Rukhin, Weighted means statistics in interlaboratory studies, Metrologia, 10.1088/0026-1394/46/3/021, 46, 3, (323-331), (2009).
- Andre Khuri, Bibliography, Linear Model Methodology, 10.1201/9781420010442, (515-534), (2009).
- Inkyung Jung, Pranab Kumar Sen, Robust testing for random effects in unbalanced heteroscedastic one-way models, Journal of Nonparametric Statistics, 10.1080/10485250802018477, 20, 4, (305-317), (2008).
- I. Outola, J. Filliben, K. G. W. Inn, Searching a robust reference value from intercomparison exercise data: Seaweed radionuclide Standard Reference Material (SRM4359), Journal of Radioanalytical and Nuclear Chemistry, 10.1007/s10967-008-0507-z, 276, 2, (329-334), (2008).
- William F. Guthrie, Interlaboratory Comparisons, Encyclopedia of Statistics in Quality and Reliability, 10.1002/9780470061572, (2008).
- G. Royer, C. Bonilla, Multiple-humped fission and fusion barriers of actinide and superheavy elements, Journal of Radioanalytical and Nuclear Chemistry, 10.1007/s10967-007-0507-4, 272, 2, (237-242), (2007).
- Andrew L. Rukhin, Estimating common vector parameters in interlaboratory studies, Journal of Multivariate Analysis, 10.1016/j.jmva.2006.09.005, 98, 3, (435-454), (2007).
- Blaza Toman, Bayesian Approaches to Calculating a Reference Value in Key Comparison Experiments, Technometrics, 10.1198/004017006000000273, 49, 1, (81-87), (2007).
- Sam Efromovich, Adaptive estimation of error density in nonparametric regression with small sample size, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2006.01.005, 137, 2, (363-378), (2007).
- K. Krishnamoorthy, Fei Lu, Thomas Mathew, A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models, Computational Statistics & Data Analysis, 10.1016/j.csda.2006.09.039, 51, 12, (5731-5742), (2007).
- John Buonaccorsi, Estimation in Two‐Stage Models with Heteroscedasticity, International Statistical Review, 10.1111/j.1751-5823.2006.tb00303.x, 74, 3, (403-418), (2007).
- Charles Hagwood, William Guthrie, Combining Data in Small Multiple-Method Studies, Technometrics, 10.1198/004017005000000300, 48, 2, (293-302), (2006).
- R Willink, Meaning and models in key comparisons, with measures of operability and interoperability, Metrologia, 10.1088/0026-1394/43/4/S08, 43, 4, (S220-S230), (2006).
- Mark G. Vangel, Interlaboratory Studies, Encyclopedia of Environmetrics, 10.1002/9780470057339, (2006).
- One-Way Classification, Analysis of Variance for Random Models, 10.1007/b138864, (93-163), (2005).
- Mark G. Vangel, Combining Functional MRI Data on Multiple Subjects, Classification, Clustering, and Data Mining Applications, 10.1007/978-3-642-17103-1, (469-476), (2004).
- Ravindra Khattree, Ch. 22. Repeatability, reproducibility and interlaboratory studies, Statistics in Industry, 10.1016/S0169-7161(03)22024-1, (795-822), (2003).
- R Willink, Statistical determination of a comparison reference value using hidden errors, Metrologia, 10.1088/0026-1394/39/4/3, 39, 4, (343-354), (2003).
- C Elster, A Link, Analysis of key comparison data: assessment of current methods for determining a reference value, Measurement Science and Technology, 10.1088/0957-0233/12/9/308, 12, 9, (1431-1438), (2001).




