Bayesian Analysis and Model Selection for Interval‐Censored Survival Data
Abstract
Summary. Interval‐censored data occur in survival analysis when the survival time of each patient is only known to be within an interval and these censoring intervals differ from patient to patient. For such data, we present some Bayesian discretized semiparametric models, incorporating proportional and nonproportional hazards structures, along with associated statistical analyses and tools for model selection using sampling‐based methods. The scope of these methodologies is illustrated through a reanalysis of a breast cancer data set (Finkelstein, 1986, Biometrics42, 845–854) to test whether the effect of covariate on survival changes over time.
Citing Literature
Number of times cited according to CrossRef: 46
- Mário de Castro, Yolanda M. Gómez, A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution, Methodology and Computing in Applied Probability, 10.1007/s11009-019-09728-2, (2019).
- Yue Zhang, Bin Zhang, Semiparametric spatial model for interval-censored data with time-varying covariate effects, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.01.017, 123, (146-156), (2018).
- Kevin J. Wilson, Malcolm Farrow, Bayes linear kinematics in a dynamic survival model, International Journal of Approximate Reasoning, 10.1016/j.ijar.2016.09.010, 80, (239-256), (2017).
- Qingning Zhou, Tao Hu, Jianguo Sun, A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data, Journal of the American Statistical Association, 10.1080/01621459.2016.1158113, 112, 518, (664-672), (2017).
- Victor H. Lachos, Dipak K. Dey, Vicente G. Cancho, Francisco Louzada, Scale mixtures log-Birnbaum–Saunders regression models with censored data: a Bayesian approach, Journal of Statistical Computation and Simulation, 10.1080/00949655.2017.1306860, 87, 10, (2002-2022), (2017).
- Francisco J. Rubio, Keming Yu, Flexible objective Bayesian linear regression with applications in survival analysis, Journal of Applied Statistics, 10.1080/02664763.2016.1182138, 44, 5, (798-810), (2016).
- Francisco J. Rubio, Marc G. Genton, Bayesian linear regression with skew‐symmetric error distributions with applications to survival analysis, Statistics in Medicine, 10.1002/sim.6897, 35, 14, (2441-2454), (2016).
- Benjamin A. Shaby, Gaia Skibinski, Michael Ando, Eva S. LaDow, Steven Finkbeiner, A three‐groups model for high‐throughput survival screens, Biometrics, 10.1111/biom.12479, 72, 3, (936-944), (2016).
- Wenjie Wang, Ming-Hui Chen, Sy Han Chiou, Hui-Chuan Lai, Xiaojing Wang, Jun Yan, Zhumin Zhang, Onset of persistent pseudomonas aeruginosa infection in children with cystic fibrosis with interval censored data, BMC Medical Research Methodology, 10.1186/s12874-016-0220-5, 16, 1, (2016).
- Chun Pan, Bo Cai, Lianming Wang, Multiple frailty model for clustered interval-censored data with frailty selection, Statistical Methods in Medical Research, 10.1177/0962280215576987, 26, 3, (1308-1322), (2015).
- Shanshan Li, Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes, Lifetime Data Analysis, 10.1007/s10985-014-9316-6, 22, 1, (145-160), (2015).
- Xiaoyan Lin, Bo Cai, Lianming Wang, Zhigang Zhang, A Bayesian proportional hazards model for general interval-censored data, Lifetime Data Analysis, 10.1007/s10985-014-9305-9, 21, 3, (470-490), (2014).
- Joseph G. Ibrahim, Ming‐Hui Chen, Debajyoti Sinha, Bayesian Survival Analysis, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
- Joseph G. Ibrahim, Ming‐Hui Chen, Bayesian Model Selection in Survival Analysis, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
- S. K. Upadhyay, Ashutosh Gupta, Bhaswati Mukherjee, Ankit Khokhar, A Bayes comparison of Weibull extension and modified Weibull models for data showing bathtub hazard rate, Journal of Statistical Computation and Simulation, 10.1080/00949655.2011.607457, 83, 1, (68-81), (2013).
- Xiaojing Wang, Ming-Hui Chen, Jun Yan, Bayesian dynamic regression models for interval censored survival data with application to children dental health, Lifetime Data Analysis, 10.1007/s10985-013-9246-8, 19, 3, (297-316), (2013).
- Larissa A. Matos, Victor H. Lachos, N. Balakrishnan, Filidor V. Labra, Influence diagnostics in linear and nonlinear mixed-effects models with censored data, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.06.021, 57, 1, (450-464), (2013).
- Lianming Wang, Xiaoyan Lin, Bo Cai, Bayesian Semiparametric Regression Analysis of Interval-Censored Data with Monotone Splines, Interval-Censored Time-to-Event Data, 10.1201/b12290-9, (2012).
- P. Congdon, C. D. Lloyd, A spatial random-effects model for interzone flows: commuting in Northern Ireland, Journal of Applied Statistics, 10.1080/02664763.2011.580336, 39, 1, (199-213), (2012).
- Xiaojing Wang, Arijit Sinha, Jun Yan, Ming-Hui Chen, Bayesian Inference of Interval-Censored Survival Data, Interval-Censored Time-to-Event Data, 10.1201/b12290-10, (2012).
- Dipankar Bandyopadhyay, Victor H. Lachos, Luis M. Castro, Dipak K. Dey, Skew‐normal/independent linear mixed models for censored responses with applications to HIV viral loads, Biometrical Journal, 10.1002/bimj.201000173, 54, 3, (405-425), (2012).
- Lianming Wang, David B. Dunson, Fast Bayesian Inference in Dirichlet Process Mixture Models, Journal of Computational and Graphical Statistics, 10.1198/jcgs.2010.07081, 20, 1, (196-216), (2011).
- Victor H. Lachos, Dipankar Bandyopadhyay, Dipak K. Dey, Linear and Nonlinear Mixed‐Effects Models for Censored HIV Viral Loads Using Normal/Independent Distributions, Biometrics, 10.1111/j.1541-0420.2011.01586.x, 67, 4, (1594-1604), (2011).
- Lianming Wang, David B. Dunson, Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting, Biometrics, 10.1111/j.1541-0420.2010.01532.x, 67, 3, (1111-1118), (2010).
- Peter Congdon, References, Applied Bayesian Hierarchical Methods, 10.1201/9781584887218, (495-500), (2010).
- Xiaoyan Lin, Lianming Wang, A semiparametric probit model for case 2 interval‐censored failure time data, Statistics in Medicine, 10.1002/sim.3832, 29, 9, (972-981), (2010).
- Helga Wagner, Bayesian estimation and stochastic model specification search for dynamic survival models, Statistics and Computing, 10.1007/s11222-009-9164-5, 21, 2, (231-246), (2009).
- Suely Ruiz Giolo, Enrico Antonio Colosimo, Clarice Garcia Borges Demétrio, Different approaches for modeling grouped survival data: A mango tree study, Journal of Agricultural, Biological, and Environmental Statistics, 10.1198/jabes.2009.0010, 14, 2, (154-169), (2009).
- Peter Congdon, Adaptive autoregressive priors for area and time structured mortality data, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2009.01.011, 139, 9, (2870-2884), (2009).
- Guadalupe Gómez, M Luz Calle, Ramon Oller, Klaus Langohr, Tutorial on methods for interval-censored data and their implementation in R, Statistical Modelling: An International Journal, 10.1177/1471082X0900900402, 9, 4, (259-297), (2009).
- Peter Congdon, A spatial structural equation model for health outcomes, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2007.09.001, 138, 7, (2090-2105), (2008).
- Peter Congdon, Estimating CHD prevalence by small area: Integrating information from health surveys and area mortality, Health & Place, 10.1016/j.healthplace.2007.04.003, 14, 1, (59-75), (2008).
- Peter Congdon, A spatially adaptive conditional autoregressive prior for area health data, Statistical Methodology, 10.1016/j.stamet.2008.02.005, 5, 6, (552-563), (2008).
- Ulysses Diva, Dipak K. Dey, Sudipto Banerjee, Parametric models for spatially correlated survival data for individuals with multiple cancers, Statistics in Medicine, 10.1002/sim.3141, 27, 12, (2127-2144), (2008).
- Peter Congdon, The need for psychiatric care in England: a spatial factor methodology, Journal of Geographical Systems, 10.1007/s10109-008-0064-6, 10, 3, (217-239), (2008).
- Jaroslaw Harezlak, Wanzhu Tu, Estimation of survival functions in interval and right censored data using STD behavioural diaries, Statistics in Medicine, 10.1002/sim.2505, 25, 23, (4053), (2006).
- K. Hemming, J. E. H. Shaw, A Class of Parametric Dynamic Survival Models, Lifetime Data Analysis, 10.1007/s10985-004-5641-5, 11, 1, (81-98), (2005).
- David B. Dunson, Amy H. Herring, Bayesian Model Selection and Averaging in Additive and Proportional Hazards Models, Lifetime Data Analysis, 10.1007/s10985-004-0384-x, 11, 2, (213-232), (2005).
- David B. Dunson, Bayesian Biostatistics, Bayesian Thinking - Modeling and Computation, 10.1016/S0169-7161(05)25025-3, (743-761), (2005).
- Joseph G. Ibrahim, Ming‐Hui Chen, Debajyoti Sinha, Bayesian Survival Analysis, Encyclopedia of Biostatistics, 10.1002/0470011815, (2005).
- Joseph G. Ibrahim, Ming‐Hui Chen, Bayesian Model Selection in Survival Analysis, Encyclopedia of Biostatistics, 10.1002/0470011815, (2005).
- David B. Dunson, Gregg E. Dinse, Bayesian Models for Multivariate Current Status Data with Informative Censoring, Biometrics, 10.1111/j.0006-341X.2002.00079.x, 58, 1, (79-88), (2004).
- Meei Pyng Ng, A Modification of Peto's Nonparametric Estimation of Survival Curves for Interval‐Censored Data, Biometrics, 10.1111/j.0006-341X.2002.00439.x, 58, 2, (439-442), (2004).
- Zuqiang Qiou, Nalini Ravishanker, Dipak K. Dey, Multivariate Survival Analysis with Positive Stable Frailties, Biometrics, 10.1111/j.0006-341X.1999.00637.x, 55, 2, (637-644), (2004).
- David B. Dunson, Patricia Chulada, Samuel J. Arbes, Bayesian Modeling of Time‐Varying and Waning Exposure Effects, Biometrics, 10.1111/1541-0420.00010, 59, 1, (83-91), (2003).
- David B. Dunson, Amy H. Herring, Bayesian Inferences in the Cox Model for Order‐Restricted Hypotheses, Biometrics, 10.1111/j.0006-341X.2003.00106.x, 59, 4, (916-923), (2003).




