Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data
Abstract
Summary. Normality of random effects is a routine assumption for the linear mixed model, but it may be unrealistic, obscuring important features of among‐individual variation. We relax this assumption by approximating the random effects density by the seminonparameteric (SNP) representation of Gallant and Nychka (1987, Econometrics55, 363–390), which includes normality as a special case and provides flexibility in capturing a broad range of nonnormal behavior, controlled by a user‐chosen tuning parameter. An advantage is that the marginal likelihood may be expressed in closed form, so inference may be carried out using standard optimization techniques. We demonstrate that standard information criteria may be used to choose the tuning parameter and detect departures from normality, and we illustrate the approach via simulation and using longitudinal data from the Framingham study.
Citing Literature
Number of times cited according to CrossRef: 159
- Özgür Asar, David Bolin, Peter J. Diggle, Jonas Wallin, Linear mixed effects models for non‐Gaussian continuous repeated measurement data, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12405, 69, 5, (1015-1065), (2020).
- Francis K. C. Hui, Samuel Müller, Alan H. Welsh, Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models, International Statistical Review, 10.1111/insr.12378, 0, 0, (2020).
- Niels Smits, Oğuzhan Öğreden, Mauricio Garnier-Villarreal, Caroline B Terwee, R Philip Chalmers, A study of alternative approaches to non-normal latent trait distributions in item response theory models used for health outcome measurement, Statistical Methods in Medical Research, 10.1177/0962280220907625, (096228022090762), (2020).
- Xue Zhang, Chun Wang, David J. Weiss, Jian Tao, Bayesian Inference for IRT Models with Non-Normal Latent Trait Distributions, Multivariate Behavioral Research, 10.1080/00273171.2020.1776096, (1-21), (2020).
- Jelena Bradic, Gerda Claeskens, Thomas Gueuning, Fixed Effects Testing in High-Dimensional Linear Mixed Models, Journal of the American Statistical Association, 10.1080/01621459.2019.1660172, (1-16), (2020).
- Marco Geraci, Alessio Farcomeni, A family of linear mixed-effects models using the generalized Laplace distribution, Statistical Methods in Medical Research, 10.1177/0962280220903763, (096228022090376), (2020).
- Tom Chen, Rui Wang, Inference for variance components in linear mixed-effect models with flexible random effect and error distributions, Statistical Methods in Medical Research, 10.1177/0962280220933909, (096228022093390), (2020).
- Nadja Klein, David J. Nott, Michael Stanley Smith, Marginally-calibrated deep distributional regression, Journal of Computational and Graphical Statistics, 10.1080/10618600.2020.1807996, (1-41), (2020).
- Lee Kennedy‐Shaffer, Victor Gruttola, Marc Lipsitch, Novel methods for the analysis of stepped wedge cluster randomized trials, Statistics in Medicine, 10.1002/sim.8451, 39, 7, (815-844), (2019).
- Ren-dao Ye, Li-jun Xu, Kun Luo, Ling Jiang, A parametric bootstrap approach for one-way classification model with skew-normal random effects, Applied Mathematics-A Journal of Chinese Universities, 10.1007/s11766-019-3564-x, 34, 4, (423-435), (2019).
- Elizabeth M. Hashimoto, Giovana O. Silva, Edwin M. M. Ortega, Gauss M. Cordeiro, Log-Burr XII Gamma–Weibull Regression Model with Random Effects and Censored Data, Journal of Statistical Theory and Practice, 10.1007/s42519-018-0026-3, 13, 2, (2019).
- Yizheng Wei, Yanyuan Ma, Tanya P. Garcia, Samiran Sinha, A consistent estimator for logistic mixed effect models, Canadian Journal of Statistics, 10.1002/cjs.11482, 47, 2, (140-156), (2019).
- Mohammad Reza Ghalani, Mohammad Reza Zadkarami, Investigation of covariance structures in modelling longitudinal ordinal responses with skew normal random effect, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2018.1554113, (1-16), (2019).
- Dang Duc Trong, Cao Xuan Phuong, Tran Quoc Viet, Nonparametric estimation of random effects densities in a linear mixed-effects model with Fourier-oscillating noise density, Communications in Statistics - Theory and Methods, 10.1080/03610926.2019.1625923, (1-28), (2019).
- Yongqiang Tang, A monotone data augmentation algorithm for longitudinal data analysis via multivariate skew-t, skew-normal or t distributions , Statistical Methods in Medical Research, 10.1177/0962280219865579, (096228021986557), (2019).
- Maryclare Griffin, Peter D. Hoff, Testing Sparsity-Inducing Penalties, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1637749, (1-12), (2019).
- Zohreh Fallah Mohsenkhani, Mohsen Mohhamadzadeh, Taban Baghfalaki, Augmented mixed beta regression models with skew-normal independent distributions: Bayesian analysis of labor force data, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2018.1435802, (1-18), (2019).
- Weiping Zhang, MengMeng Zhang, Yu Chen, A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses, Sankhya B, 10.1007/s13571-019-00197-8, (2019).
- Aurélie Bertrand, Ingrid Van Keilegom, Catherine Legrand, Flexible parametric approach to classical measurement error variance estimation without auxiliary data, Biometrics, 10.1111/biom.12960, 75, 1, (297-307), (2018).
- Guilin Li, Kuan Khoon Royston Tan, Szu Hui Ng, Daniel H. C. Chua, A Multilevel Zero-Inflated Model for the Study of Copper Hillocks Growth in Integrated Circuits Manufacturing, IEEE Transactions on Semiconductor Manufacturing, 10.1109/TSM.2018.2853800, 31, 3, (385-394), (2018).
- undefined, Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence - ICMAI '18, 10.1145/3208788.3208805, (15-20), (2018).
- Patrick Michaelis, Nadja Klein, Thomas Kneib, Bayesian Multivariate Distributional Regression With Skewed Responses and Skewed Random Effects, Journal of Computational and Graphical Statistics, 10.1080/10618600.2017.1395343, 27, 3, (602-611), (2018).
- Lin Zhang, Dipankar Bandyopadhyay, A graphical model for skewed matrix-variate non-randomly missing data, Biostatistics, 10.1093/biostatistics/kxy056, (2018).
- Audrey Collée, Jean-Baptiste Watelet, Hanne Vanmaele, Jozef Van Thielen, Peter Clarys, Longitudinal changes in hearing threshold levels for noise-exposed military personnel, International Archives of Occupational and Environmental Health, 10.1007/s00420-018-1368-6, (2018).
- F. Kahrari, C. S. Ferreira, R. B. Arellano-Valle, Skew-Normal-Cauchy Linear Mixed Models, Sankhya B, 10.1007/s13571-018-0173-2, (2018).
- Christian Corsi, Antonio Prencipe, The Contribution of University Spin-Offs to the Competitive Advantage of Regions, Journal of the Knowledge Economy, 10.1007/s13132-017-0501-1, 9, 2, (473-499), (2017).
- Mixia Wu, Jing Zhao, Tonghui Wang, Yan Zhao, The ANOVA-type inference in linear mixed model with skew-normal error, Journal of Systems Science and Complexity, 10.1007/s11424-017-5253-2, 30, 3, (710-720), (2017).
- Alexandra Soberón, Winfried Stute, Assessing skewness, kurtosis and normality in linear mixed models, Journal of Multivariate Analysis, 10.1016/j.jmva.2017.07.010, 161, (123-140), (2017).
- Pankaj K Choudhary, Haikady N Nagaraja, References, Measuring Agreement, undefined, (319-330), (2017).
- Anoshirvan Kazemnejad, Bayesian Analysis of Joint Modeling of Longitudinal and Time to Event Data Using Some Skew-Elliptical Distributions, Biometrics & Biostatistics International Journal, 10.15406/bbij.2017.05.00153, 5, 6, (2017).
- Jaeun Choi, Donglin Zeng, Andrew F. Olshan, Jianwen Cai, Joint modeling of survival time and longitudinal outcomes with flexible random effects, Lifetime Data Analysis, 10.1007/s10985-017-9405-4, (2017).
- Reza Drikvandi, Geert Verbeke, Geert Molenberghs, Diagnosing misspecification of the random‐effects distribution in mixed models, Biometrics, 10.1111/biom.12551, 73, 1, (63-71), (2016).
- A. Aghamohammadi, M. R. Meshkani, Bayesian quantile regression for skew-normal linear mixed models, Communications in Statistics - Theory and Methods, 10.1080/03610926.2016.1257713, 46, 22, (10953-10972), (2016).
- Xianzheng Huang, Semi-non parametric smooth isotonic regression, Communications in Statistics - Theory and Methods, 10.1080/03610926.2016.1228963, 46, 20, (10071-10087), (2016).
- Leonardo Grilli, Carla Rampichini, Specification of Random Effects in Multilevel Models: A Review, SSRN Electronic Journal, 10.2139/ssrn.2735400, (2016).
- Paul W. Bernhardt, A flexible cure rate model with dependent censoring and a known cure threshold, Statistics in Medicine, 10.1002/sim.7014, 35, 25, (4607-4623), (2016).
- Mehrdad Vossoughi, S.M.T. Ayatollahi, Mina Towhidi, Seyyed Taghi Heydari, A distribution-free test of parallelism for two-sample repeated measurements, Statistical Methodology, 10.1016/j.stamet.2015.12.001, 30, (31-44), (2016).
- Junshu Bao, Timothy E. Hanson, A mean-constrained finite mixture of normals model, Statistics & Probability Letters, 10.1016/j.spl.2016.05.009, 117, (93-99), (2016).
- Kalyan Das, Mohamad Elmasri, Arusharka Sen, A Skew‐normal copula‐driven GLMM, Statistica Neerlandica, 10.1111/stan.12092, 70, 4, (396-413), (2016).
- Fernando A. Quintana, Wesley O. Johnson, L. Elaine Waetjen, Ellen B. Gold, Bayesian Nonparametric Longitudinal Data Analysis, Journal of the American Statistical Association, 10.1080/01621459.2015.1076725, 111, 515, (1168-1181), (2016).
- Huirong Zhu, Sheng Luo, Stacia M DeSantis, Zero-inflated count models for longitudinal measurements with heterogeneous random effects, Statistical Methods in Medical Research, 10.1177/0962280215588224, 26, 4, (1774-1786), (2015).
- Tanya P. Garcia, Yanyuan Ma, Optimal Estimator for Logistic Model with Distribution‐free Random Intercept, Scandinavian Journal of Statistics, 10.1111/sjos.12170, 43, 1, (156-171), (2015).
- Miran A. Jaffa, Ayad A. Jaffa, Joint modeling of covariates and censoring process assuming non-constant dropout hazard, Statistical Methods & Applications, 10.1007/s10260-015-0302-2, 25, 2, (251-267), (2015).
- Dishari Sengupta, Pankaj K. Choudhary, Phillip Cassey, Modeling and Analysis of Method Comparison Data with Skewness and Heavy Tails, Ordered Data Analysis, Modeling and Health Research Methods, 10.1007/978-3-319-25433-3_11, (169-187), (2015).
- Ameneh Kheradmandi, Abdolrahman Rasekh, Estimation in skew-normal linear mixed measurement error models, Journal of Multivariate Analysis, 10.1016/j.jmva.2014.12.007, 136, (1-11), (2015).
- G. Mabon, Adaptive estimation of marginal random-effects densities in linear mixed-effects models, Mathematical Methods of Statistics, 10.3103/S1066530715020015, 24, 2, (81-109), (2015).
- Ren Dao Ye, Tong Hui Wang, Inferences in linear mixed models with skew-normal random effects, Acta Mathematica Sinica, English Series, 10.1007/s10114-015-3326-5, 31, 4, (576-594), (2015).
- Yuan Ying Zhao, Nian Sheng Tang, Maximum-likelihood estimation and influence analysis in multivariate skew-normal reproductive dispersion mixed models for longitudinal data, Statistics, 10.1080/02331888.2014.993638, 49, 6, (1348-1365), (2015).
- M. Teimourian, T. Baghfalaki, M. Ganjali, D. Berridge, Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach, Journal of Applied Statistics, 10.1080/02664763.2015.1023557, 42, 10, (2233-2256), (2015).
- Jodi M. Casabianca, Charles Lewis, IRT Item Parameter Recovery With Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models, Journal of Educational and Behavioral Statistics, 10.3102/1076998615606112, 40, 6, (547-578), (2015).
- Rendao Ye, Tonghui Wang, Saowanit Sukparungsee, Arjun K. Gupta, Tests in variance components models under skew-normal settings, Metrika, 10.1007/s00184-015-0532-1, 78, 7, (885-904), (2015).
- F.J. Rubio, On the propriety of the posterior of hierarchical linear mixed models with flexible random effects distributions, Statistics & Probability Letters, 10.1016/j.spl.2014.09.023, 96, (154-161), (2015).
- Adam Loy, Heike Hofmann, Are You Normal? The Problem of Confounded Residual Structures in Hierarchical Linear Models, Journal of Computational and Graphical Statistics, 10.1080/10618600.2014.960084, 24, 4, (1191-1209), (2015).
- J.N.K. Rao, Isabel Molina, References, Small Area Estimation, 10.1002/9781118735855, (405-430), (2015).
- Yangxin Huang, Ren Chen, Getachew Dagne, Yiliang Zhu, Henian Chen, Bayesian Bivariate Linear Mixed-Effects Models with Skew-Normal/Independent Distributions, with Application to AIDS Clinical Studies, Journal of Biopharmaceutical Statistics, 10.1080/10543406.2014.920660, 25, 3, (373-396), (2014).
- Afsane Rastegaran, Mohammad Reza Zadkarami, A skew-normal random effects model for longitudinal ordinal categorical responses with missing data, Journal of Applied Statistics, 10.1080/02664763.2014.938223, 42, 1, (114-126), (2014).
- Leonardo Grilli, Carla Rampichini, Specification of random effects in multilevel models: a review, Quality & Quantity, 10.1007/s11135-014-0060-5, 49, 3, (967-976), (2014).
- Rendao Ye, Tonghui Wang, Arjun K. Gupta, Distribution of matrix quadratic forms under skew-normal settings, Journal of Multivariate Analysis, 10.1016/j.jmva.2014.07.001, 131, (229-239), (2014).
- Paul W. Bernhardt, Huixia Judy Wang, Daowen Zhang, Flexible modeling of survival data with covariates subject to detection limits via multiple imputation, Computational Statistics & Data Analysis, 10.1016/j.csda.2013.07.027, 69, (81-91), (2014).
- Francisco Louzada, Paulo H. Ferreira, Carlos A.R. Diniz, Skew-normal distribution for growth curve models in presence of a heteroscedasticity structure, Journal of Applied Statistics, 10.1080/02664763.2014.891005, 41, 8, (1785-1798), (2014).
- Pankaj K. Choudhary, Dishari Sengupta, Phillip Cassey, A general skew-t mixed model that allows different degrees of freedom for random effects and error distributions, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2013.11.015, 147, (235-247), (2014).
- Yinshan Zhao, David K. B. Li, A. John Petkau, Andrew Riddehough, Anthony Traboulsee, Detection of Unusual Increases in MRI Lesion Counts in Individual Multiple Sclerosis Patients, Journal of the American Statistical Association, 10.1080/01621459.2013.847373, 109, 505, (119-132), (2014).
- Oksana Pugach, Donald Hedeker, Robin Mermelstein, A bivariate mixed-effects location-scale model with application to ecological momentary assessment (EMA) data, Health Services and Outcomes Research Methodology, 10.1007/s10742-014-0126-9, 14, 4, (194-212), (2014).
- Filidor Vilca, N. Balakrishnan, Camila Borelli Zeller, A robust extension of the bivariate Birnbaum–Saunders distribution and associated inference, Journal of Multivariate Analysis, 10.1016/j.jmva.2013.11.005, 124, (418-435), (2014).
- Li Liu, Liming Xiang, Semiparametric estimation in generalized linear mixed models with auxiliary covariates: A pairwise likelihood approach, Biometrics, 10.1111/biom.12208, 70, 4, (910-919), (2014).
- Haifen Li, Jiajia Zhang, Yincai Tang, Smooth Semi‐nonparametric Analysis for Mixture Cure Models and Its Application to Breast Cancer, Australian & New Zealand Journal of Statistics, 10.1111/anzs.12080, 56, 3, (217-235), (2014).
- Haiyan Su, Empirical Likelihood-Based Method for LME Models, Encyclopedia of Business Analytics and Optimization, 10.4018/978-1-4666-5202-6, (812-823), (2014).
- A. Guolo, The SIMEX approach to measurement error correction in meta‐analysis with baseline risk as covariate, Statistics in Medicine, 10.1002/sim.6076, 33, 12, (2062-2076), (2013).
- Pedro A. Torres, Daowen Zhang, Huixia Judy Wang, Constructing Conditional Reference Charts for Grip Strength Measured with Error, Topics in Applied Statistics, 10.1007/978-1-4614-7846-1_24, (299-310), (2013).
- Iraj Kazemi, Zahra Mahdiyeh, Marjan Mansourian, Jongbae J. Park, Bayesian analysis of multivariate mixed models for a prospective cohort study using skew‐elliptical distributions, Biometrical Journal, 10.1002/bimj.201100208, 55, 4, (495-508), (2013).
- Yangxin Huang, Getachew A. Dagne, Jeong-Gun Park, Segmental modeling of changing immunologic response for CD4 data with skewness, missingness and dropout, Journal of Applied Statistics, 10.1080/02664763.2013.809569, 40, 10, (2244-2258), (2013).
- M. Ganjali, T. Baghfalaki, M. Khazaei, A linear mixed model for analyzing longitudinal skew-normal responses with random dropout, Journal of the Korean Statistical Society, 10.1016/j.jkss.2012.06.004, 42, 2, (149-160), (2013).
- Geert Verbeke, Geert Molenberghs, The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models, Biostatistics, 10.1093/biostatistics/kxs059, 14, 3, (477-490), (2013).
- Erning Li, Mohsen Pourahmadi, An alternative REML estimation of covariance matrices in linear mixed models, Statistics & Probability Letters, 10.1016/j.spl.2012.12.028, 83, 4, (1071-1077), (2013).
- Guangxiang Zhang, John J. Chen, Adaptive fitting of linear mixed-effects models with correlated random effects, Journal of Statistical Computation and Simulation, 10.1080/00949655.2012.690763, 83, 12, (2291-2314), (2013).
- Ileana Baldi, Eva Pagano, Paola Berchialla, Alessandro Desideri, Alberto Ferrando, Franco Merletti, Dario Gregori, Modeling healthcare costs in simultaneous presence of asymmetry, heteroscedasticity and correlation, Journal of Applied Statistics, 10.1080/02664763.2012.740628, 40, 2, (298-310), (2013).
- Reyhaneh Rikhtehgaran, Iraj Kazemi, Semi-parametric Bayesian estimation of mixed-effects models using the multivariate skew-normal distribution, Computational Statistics, 10.1007/s00180-012-0392-3, 28, 5, (2007-2027), (2013).
- Nian-Sheng Tang, Yuan-Ying Zhao, Semiparametric Bayesian analysis of nonlinear reproductive dispersion mixed models for longitudinal data, Journal of Multivariate Analysis, 10.1016/j.jmva.2012.09.005, 115, (68-83), (2013).
- Daniel Li, Liqun Wang, A Semiparametric Estimation Approach for Linear Mixed Models, Communications in Statistics - Theory and Methods, 10.1080/03610926.2011.601837, 42, 11, (1982-1997), (2013).
- C. Geerdens, G. Claeskens, P. Janssen, Goodness-of-fit tests for the frailty distribution in proportional hazards models with shared frailty, Biostatistics, 10.1093/biostatistics/kxs053, 14, 3, (433-446), (2012).
- A. Guolo, Flexibly modeling the baseline risk in meta‐analysis, Statistics in Medicine, 10.1002/sim.5506, 32, 1, (40-50), (2012).
- Mingan Yang, Bayesian variable selection for logistic mixed model with nonparametric random effects, Computational Statistics & Data Analysis, 10.1016/j.csda.2011.12.014, 56, 9, (2663-2674), (2012).
- Candida Geerdens, Gerda Claeskens, Paul Janssens, Goodness-of-Fit Tests for the Frailty Distribution in Proportional Hazards Models with Shared Frailty, SSRN Electronic Journal, 10.2139/ssrn.2165205, (2012).
- Candida Geerdens, Gerda Claeskens, Paul Janssen, Goodness-of-Fit Tests for the Frailty Distribution in Proportional Hazards Models with Shared Frailty, SSRN Electronic Journal, 10.2139/ssrn.2165213, (2012).
- IRINA IRINCHEEVA, EVA CANTONI, MARC G. GENTON, Generalized Linear Latent Variable Models with Flexible Distribution of Latent Variables, Scandinavian Journal of Statistics, 10.1111/j.1467-9469.2011.00777.x, 39, 4, (663-680), (2012).
- Kyeongmi Cheon, Paul S. Albert, Zhiwei Zhang, The impact of random‐effect misspecification on percentile estimation for longitudinal growth data, Statistics in Medicine, 10.1002/sim.5437, 31, 28, (3708-3718), (2012).
- Dipankar Bandyopadhyay, Victor H. Lachos, Luis M. Castro, Dipak K. Dey, Skew‐normal/independent linear mixed models for censored responses with applications to HIV viral loads, Biometrical Journal, 10.1002/bimj.201000173, 54, 3, (405-425), (2012).
- W. Xu, H. Zhou, Mixed effect regression analysis for a cluster-based two-stage outcome-auxiliary-dependent sampling design with a continuous outcome, Biostatistics, 10.1093/biostatistics/kxs013, 13, 4, (650-664), (2012).
- Fabienne Comte, Adeline Samson, Nonparametric estimation of random-effects densities in linear mixed-effects model, Journal of Nonparametric Statistics, 10.1080/10485252.2012.731056, 24, 4, (951-975), (2012).
- Sonya K. Sterba, Ruth E. Baldasaro, Daniel J. Bauer, Factors Affecting the Adequacy and Preferability of Semiparametric Groups-Based Approximations of Continuous Growth Trajectories, Multivariate Behavioral Research, 10.1080/00273171.2012.692639, 47, 4, (590-634), (2012).
- H. Li, L. Wang, A consistent simulation-based estimator in generalized linear mixed models, Journal of Statistical Computation and Simulation, 10.1080/00949655.2011.569721, 82, 8, (1085-1103), (2012).
- Celso Rômulo Barbosa Cabral, Víctor Hugo Lachos, Maria Regina Madruga, Bayesian analysis of skew-normal independent linear mixed models with heterogeneity in the random-effects population, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2011.07.007, 142, 1, (181-200), (2012).
- Chi-Chung Wen, Cox regression for mixed case interval-censored data with covariate errors, Lifetime Data Analysis, 10.1007/s10985-012-9220-x, 18, 3, (321-338), (2012).
- Ping Wu, LiXing Zhu, Yun Fang, Checking for normality in linear mixed models, Science China Mathematics, 10.1007/s11425-011-4352-0, 55, 4, (787-804), (2012).
- Song Yan, Daowen Zhang, Wenbin Lu, James A. Grifo, Mengling Liu, A Semi-nonparametric Approach to Joint Modeling of A Primary Binary Outcome and Longitudinal Data Measured at Discrete Informative Times, Statistics in Biosciences, 10.1007/s12561-011-9053-2, 4, 2, (213-234), (2012).
- Marjan Mansourian, Anoshirvan Kazemnejad, Iraj Kazemi, Farid Zayeri, Masoud Soheilian, Bayesian analysis of longitudinal ordered data with flexible random effects using McMC: application to diabetic macular Edema data, Journal of Applied Statistics, 10.1080/02664763.2011.638367, 39, 5, (1087-1100), (2012).
- Dajiang J. Liu, Suzanne M. Leal, Estimating Genetic Effects and Quantifying Missing Heritability Explained by Identified Rare-Variant Associations, The American Journal of Human Genetics, 10.1016/j.ajhg.2012.08.008, 91, 4, (585-596), (2012).
- Melanie M. Wall, Jia Guo, Yasuo Amemiya, Mixture Factor Analysis for Approximating a Nonnormally Distributed Continuous Latent Factor With Continuous and Dichotomous Observed Variables, Multivariate Behavioral Research, 10.1080/00273171.2012.658339, 47, 2, (276-313), (2012).
- Yangxin Huang, Getachew A Dagne, Shumin Zhou, Zhongjun Wang, Piecewise mixed-effects models with skew distributions for evaluating viral load changes: A Bayesian approach, Statistical Methods in Medical Research, 10.1177/0962280211426184, 24, 6, (730-746), (2011).
- D. M. Vock, M. Davidian, A. A. Tsiatis, A. J. Muir, Mixed model analysis of censored longitudinal data with flexible random-effects density, Biostatistics, 10.1093/biostatistics/kxr026, 13, 1, (61-73), (2011).
- See more




