Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803
Summary
Retinal and its derivatives represent essential compounds in many biological systems. In animals, they are synthesized through a symmetrical cleavage of β‐carotene catalysed by a monooxygenase. Here, we demonstrate that the open reading frame sll1541 from the cyanobacterium Synechocystis sp. PCC 6803 encodes the first eubacterial, retinal synthesizing enzyme (Diox1) thus far reported. In contrast to enzymes from animals, Diox1 converts β‐apo‐carotenals instead of β‐carotene into retinal in vitro. The identity of the enzymatic product was proven by HPLC, GC‐MS and in a biological test. Investigations, of the stereospecifity showed that Diox1 cleaved only the all‐trans form of β‐apo‐8′‐carotenal, yielding all‐trans‐retinal. However, Diox1 exhibited wide substrate specificity with respect to chain‐lengths and functional end‐groups. Although with divergent Km and Vmax values, the enzyme converted β‐apo‐carotenals, (3R)‐3‐OH‐β‐apo‐carotenals as well as apo‐lycopenals into retinal, (3R)‐3‐hydroxy‐retinal and acycloretinal respectively. In addition, the alcohols of these substrates were cleaved to yield the corresponding retinal derivatives.
Number of times cited: 62
- Jim Junhui Huang, Shaoling Lin, Wenwen Xu and Peter Chi Keung Cheung, Occurrence and biosynthesis of carotenoids in phytoplankton, Biotechnology Advances, 35, 5, (597), (2017).
- Jordi Pérez-Gil, Manuel Rodríguez-Concepción and Claudia E. Vickers, Formation of Isoprenoids, Biogenesis of Fatty Acids, Lipids and Membranes, 10.1007/978-3-319-43676-0_6-1, (1-29), (2017).
- Ming-Hua Liang, Jianhua Zhu and Jian-Guo Jiang, Carotenoids biosynthesis and cleavage related genes from bacteria to plants, Critical Reviews in Food Science and Nutrition, (1), (2017).
- Xuewu Sui, Andrew C. Weitz, Erik R. Farquhar, Mohsen Badiee, Surajit Banerjee, Johannes von Lintig, Gregory P. Tochtrop, Krzysztof Palczewski, Michael P. Hendrich and Philip D. Kiser, Structure and Spectroscopy of Alkene-Cleaving Dioxygenases Containing an Atypically Coordinated Non-Heme Iron Center, Biochemistry, 10.1021/acs.biochem.7b00251, 56, 22, (2836-2852), (2017).
- Eva L. Decker, Adrian Alder, Stefan Hunn, Jenny Ferguson, Mikko T. Lehtonen, Bjoern Scheler, Klaus L. Kerres, Gertrud Wiedemann, Vajiheh Safavi‐Rizi, Steffen Nordzieke, Aparna Balakrishna, Lina Baz, Javier Avalos, Jari P. T. Valkonen, Ralf Reski and Salim Al‐Babili, Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens, New Phytologist, 216, 2, (455-468), (2017).
- Xuewu Sui, Jianye Zhang, Marcin Golczak, Krzysztof Palczewski and Philip D. Kiser, Key Residues for Catalytic Function and Metal Coordination in a Carotenoid Cleavage Dioxygenase, Journal of Biological Chemistry, 10.1074/jbc.M116.744912, 291, 37, (19401-19412), (2016).
- Que Chen, Jeroen B. van der Steen, Henk L. Dekker, Srividya Ganapathy, Willem J. de Grip and Klaas J. Hellingwerf, Expression of holo -proteorhodopsin in Synechocystis sp. PCC 6803, Metabolic Engineering, 35, (83), (2016).
- Mark Bruno, Julian Koschmieder, Florian Wuest, Patrick Schaub, Mirjam Fehling-Kaschek, Jens Timmer, Peter Beyer and Salim Al-Babili, Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites, Journal of Experimental Botany, 67, 21, (5993), (2016).
- Mark Bruno, Peter Beyer and Salim Al-Babili, The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls, Archives of Biochemistry and Biophysics, 572, (126), (2015).
- Salim Al-Babili and Harro J. Bouwmeester, Strigolactones, a Novel Carotenoid-Derived Plant Hormone, Annual Review of Plant Biology, 66, 1, (161), (2015).
- Xuewu Sui, Philip D. Kiser, Tao Che, Paul R. Carey, Marcin Golczak, Wuxian Shi, Johannes von Lintig and Krzysztof Palczewski, Analysis of Carotenoid Isomerase Activity in a Prototypical Carotenoid Cleavage Enzyme, Apocarotenoid Oxygenase (ACO), Journal of Biological Chemistry, 289, 18, (12286), (2014).
- Peter J. Harrison and Timothy D.H. Bugg, Enzymology of the carotenoid cleavage dioxygenases: Reaction mechanisms, inhibition and biochemical roles, Archives of Biochemistry and Biophysics, 10.1016/j.abb.2013.10.005, 544, (105-111), (2014).
- Andrea Ilg, Mark Bruno, Peter Beyer and Salim Al-Babili, Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono‐apocarotenoids and isoprenoid volatiles, FEBS Open Bio, 4, 1, (584-593), (2014).
- Abdulkerim Eroglu and Earl H. Harrison, Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids, Journal of Lipid Research, 54, 7, (1719), (2013).
- Xuewu Sui, Philip D. Kiser, Johannes von Lintig and Krzysztof Palczewski, Structural basis of carotenoid cleavage: From bacteria to mammals, Archives of Biochemistry and Biophysics, 10.1016/j.abb.2013.06.012, 539, 2, (203-213), (2013).
- Carolien Ruyter-Spira, Salim Al-Babili, Sander van der Krol and Harro Bouwmeester, The biology of strigolactones, Trends in Plant Science, 18, 2, (72), (2013).
- María J. Rodrigo, Berta Alquézar, Enriqueta Alós, Víctor Medina, Lourdes Carmona, Mark Bruno, Salim Al-Babili and Lorenzo Zacarías, A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments, Journal of Experimental Botany, 64, 14, (4461), (2013).
- Daniela Buongiorno and Grit D. Straganz, Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers, Coordination Chemistry Reviews, 10.1016/j.ccr.2012.04.028, 257, 2, (541-563), (2013).
- Xiaoqin Wu, Jieqiong Jiang and Jianying Hu, Determination and Occurrence of Retinoids in a Eutrophic Lake (Taihu Lake, China): Cyanobacteria Blooms Produce Teratogenic Retinal, Environmental Science & Technology, 10.1021/es303582u, 47, 2, (807-814), (2013).
- Danika Trautmann, Peter Beyer and Salim Al‐Babili, The ORF slr0091 of ynechocystis sp. PCC6803 encodes a high‐light induced aldehyde dehydrogenase converting apocarotenals and alkanals, The FEBS Journal, 280, 15, (3685-3696), (2013).
- P. D. Kiser, E. R. Farquhar, W. Shi, X. Sui, M. R. Chance and K. Palczewski, Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis, Proceedings of the National Academy of Sciences, 109, 41, (E2747), (2012).
- Hongli Cui, Yinchu Wang and Song Qin, Genomewide Analysis of Carotenoid Cleavage Dioxygenases in Unicellular and Filamentous Cyanobacteria, Comparative and Functional Genomics, 2012, (1), (2012).
- Masayuki Muramatsu and Yukako Hihara, Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses, Journal of Plant Research, 125, 1, (11), (2012).
- Glenn P. Lobo, Jaume Amengual, Grzegorz Palczewski, Darwin Babino and Johannes von Lintig, Mammalian Carotenoid-oxygenases: Key players for carotenoid function and homeostasis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 10.1016/j.bbalip.2011.04.010, 1821, 1, (78-87), (2012).
- Jana Hoffmann, Judit Bóna‐Lovász, Holger Beuttler and Josef Altenbuchner, In vivo and in vitro studies on the carotenoid cleavage oxygenases from phingopyxis alaskensis RB2256 and lesiocystis pacifica SIR‐1 revealed their substrate specificities and non‐retinal‐forming cleavage activities, The FEBS Journal, 279, 20, (3911-3924), (2012).
- Michael H. Walter and Dieter Strack, Carotenoids and their cleavage products: Biosynthesis and functions, Natural Product Reports, 10.1039/c0np00036a, 28, 4, (663), (2011).
- Thomas Brefort, Daniel Scherzinger, M. Carmen Limón, Alejandro F. Estrada, Danika Trautmann, Carina Mengel, Javier Avalos and Salim Al-Babili, Cleavage of resveratrol in fungi: Characterization of the enzyme Rco1 from Ustilago maydis, Fungal Genetics and Biology, 10.1016/j.fgb.2010.10.009, 48, 2, (132-143), (2011).
- Humberto R. Medina, Enrique Cerdá‐Olmedo and Salim Al‐Babili, Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces, Molecular Microbiology, 82, 1, (199-208), (2011).
- Daniel Scherzinger, Erdmann Scheffer, Cornelia Bär, Hansgeorg Ernst and Salim Al‐Babili, The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids, The FEBS Journal, 277, 22, (4662-4673), (2010).
- Andrea Ilg, Qiuju Yu, Patrick Schaub, Peter Beyer and Salim Al-Babili, Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta, Planta, 232, 3, (691), (2010).
- Yeong-Su Kim and Deok-Kun Oh, Biotransformation of carotenoids to retinal by carotenoid 15,15′-oxygenase, Applied Microbiology and Biotechnology, 10.1007/s00253-010-2823-9, 88, 4, (807-816), (2010).
- Michael H. Walter, Daniela S. Floss and Dieter Strack, Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles, Planta, 232, 1, (1), (2010).
- Qiuju Yu, Patrick Schaub, Sandro Ghisla, Salim Al-Babili, Anja Krieger-Liszkay and Peter Beyer, The Lycopene Cyclase CrtY fromPantoea ananatis(FormerlyErwinia uredovora) Catalyzes an FADred-dependent Non-redox Reaction, Journal of Biological Chemistry, 285, 16, (12109), (2010).
- Martin Lohr, Carotenoids, The Chlamydomonas Sourcebook, 10.1016/B978-0-12-370873-1.00029-0, (799-817), (2009).
- Andrea Ilg, Peter Beyer and Salim Al‐Babili, Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis, The FEBS Journal, 276, 3, (736-747), (2008).
- Georg Kreimer, The green algal eyespot apparatus: a primordial visual system and more?, Current Genetics, 55, 1, (19), (2009).
- Eduardo Rodríguez-Bustamante, Gabriela Maldonado-Robledo, Roberto Arreguín-Espinosa, Guillermo Mendoza-Hernández, Romina Rodríguez-Sanoja and Sergio Sánchez, Glucose exerts a negative effect over a peroxidase from Trichosporon asahii, with carotenoid cleaving activity, Applied Microbiology and Biotechnology, 10.1007/s00253-009-1996-6, 84, 3, (499-510), (2009).
- John A. Raven, Functional evolution of photochemical energy transformations in oxygen-producing organisms, Functional Plant Biology, 36, 6, (505), (2009).
- Adrian Alder, Peter Bigler, Danièle Werck‐Reichhart and Salim Al‐Babili, In vitro characterization of Synechocystis CYP120A1 revealed the first nonanimal retinoic acid hydroxylase, The FEBS Journal, 276, 19, (5416-5431), (2009).
- Daniel Scherzinger and Salim Al‐Babili, In vitro characterization of a carotenoid cleavage dioxygenase from Nostoc sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlight, Molecular Microbiology, 69, 1, (231-244), (2008).
- Erinn K. Marasco and Claudia Schmidt‐Dannert, Identification of Bacterial Carotenoid Cleavage Dioxygenase Homologues That Cleave the Interphenyl α,β Double Bond of Stilbene Derivatives via a Monooxygenase Reaction, ChemBioChem, 9, 9, (1450-1461), (2008).
- Tomasz Borowski, Margareta R. A. Blomberg and Per E. M. Siegbahn, Reaction Mechanism of Apocarotenoid Oxygenase (ACO): A DFT Study, Chemistry – A European Journal, 14, 7, (2264-2276), (2008).
- Julia A. Maresca, Joel E. Graham and Donald A. Bryant, The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria, Photosynthesis Research, 97, 2, (121), (2008).
- Alejandro F. Estrada, Dominic Maier, Daniel Scherzinger, Javier Avalos and Salim Al-Babili, Novel apocarotenoid intermediates in Neurospora crassa mutants imply a new biosynthetic reaction sequence leading to neurosporaxanthin formation, Fungal Genetics and Biology, 45, 11, (1497), (2008).
- Shukui Guo, Jason Boyd, Ramaswami Sammynaiken and Michèle C. Loewen, Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1, Biochemistry and Cell Biology, 86, 3, (262), (2008).
- V. Oberhauser, O. Voolstra, A. Bangert, J. von Lintig and K. Vogt, NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide, Proceedings of the National Academy of Sciences, 105, 48, (19000), (2008).
- Marcos S. Simões‐costa, Ana Paula Azambuja and José Xavier‐Neto, The search for non‐chordate retinoic acid signaling: lessons from chordates, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 310B, 1, (54-72), (2006).
- E. Rodríguez-Bustamante and S. Sánchez, Microbial Production of C13-Norisoprenoids and Other Aroma Compounds via Carotenoid Cleavage, Critical Reviews in Microbiology, 33, 3, (211), (2007).
- Lorena Saelices, Loubna Youssar, Iris Holdermann, Salim Al-Babili and Javier Avalos, Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway, Molecular Genetics and Genomics, 278, 5, (527), (2007).
- Alfonso Prado‐Cabrero, Alejandro F. Estrada, Salim Al‐Babili and Javier Avalos, Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway, Molecular Microbiology, 64, 2, (448-460), (2007).
- G. D. Straganz and B. Nidetzky, Variations of the 2‐His‐1‐carboxylate Theme in Mononuclear Non‐Heme FeII Oxygenases, ChemBioChem, 7, 10, (1536-1548), (2006).
- Salim Al-Babili, Tran Thi Cuc Hoa and Patrick Schaub, Exploring the potential of the bacterial carotene desaturase CrtI to increase the β-carotene content in Golden Rice, Journal of Experimental Botany, 57, 4, (1007), (2006).
- Erin K. Marasco, Kimleng Vay and Claudia Schmidt-Dannert, Identification of Carotenoid Cleavage Dioxygenases from Nostoc sp. PCC 7120 with Different Cleavage Activities , Journal of Biological Chemistry, 10.1074/jbc.M606299200, 281, 42, (31583-31593), (2006).
- Kang-Quan Hu, Chun Liu, Hansgeorg Ernst, Norman I. Krinsky, Robert M. Russell and Xiang-Dong Wang, The Biochemical Characterization of Ferret Carotene-9′, 10′-Monooxygenase Catalyzing Cleavage of Carotenoidsin Vitroandin Vivo, Journal of Biological Chemistry, 281, 28, (19327), (2006).
- Michele E Auldridge, Donald R McCarty and Harry J Klee, Plant carotenoid cleavage oxygenases and their apocarotenoid products, Current Opinion in Plant Biology, 10.1016/j.pbi.2006.03.005, 9, 3, (315-321), (2006).
- Niels-Ulrik Frigaard, Asuncion Martinez, Tracy J. Mincer and Edward F. DeLong, Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea, Nature, 439, 7078, (847), (2006).
- Holger Schmidt, Robert Kurtzer, Wolfgang Eisenreich and Wilfried Schwab, The Carotenase AtCCD1 fromArabidopsis thalianaIs a Dioxygenase, Journal of Biological Chemistry, 281, 15, (9845), (2006).
- Adrian K. Sharma, John L. Spudich and W. Ford Doolittle, Microbial rhodopsins: functional versatility and genetic mobility, Trends in Microbiology, 14, 11, (463), (2006).
- Eugenia Poliakov, Susan Gentleman, Francis X. Cunningham, Nancy J. Miller-Ihli and T. Michael Redmond, Key Role of Conserved Histidines in Recombinant Mouse β-Carotene 15,15′-Monooxygenase-1 Activity, Journal of Biological Chemistry, 280, 32, (29217), (2005).
- Ian B. Taylor, Tineke Sonneveld, Timothy D. H. Bugg and Andrew J. Thompson, Regulation and Manipulation of the Biosynthesis of Abscisic Acid, Including the Supply of Xanthophyll Precursors, Journal of Plant Growth Regulation, (2005).
- Gazalah Sabehi, Alexander Loy, Kwang-Hwan Jung, Ranga Partha, John L Spudich, Tal Isaacson, Joseph Hirschberg, Michael Wagner, Oded Béjà and Jonathan Eisen, New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins, PLoS Biology, 3, 8, (e273), (2005).
- Oussama Ahrazem, Lourdes Gómez-Gómez, María Rodrigo, Javier Avalos and María Limón, Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions, International Journal of Molecular Sciences, 10.3390/ijms17111781, 17, 11, (1781), (2016).




