Volume 63, Issue 1

Second‐order analysis of inhomogeneous spatio‐temporal point process data

Edith Gabriel

Department of Medicine, Lancaster University, Lancaster LA1 4YB, UK

edith.gabriel@univ‐avignon.fr.

Present address: IUT STID ‐ LANLG, Université d'Avignon, BP 1207, 84 911 Avignon, France.

Search for more papers by this author
Peter J. Diggle

Department of Medicine, Lancaster University, Lancaster LA1 4YB, UK

Search for more papers by this author
First published: 16 January 2009
Citations: 58

Present address: IUT STID ‐ LANLG, Université d'Avignon, BP 1207, 84 911 Avignon, France.

Abstract

Second‐order methods provide a natural starting point for the analysis of spatial point process data. In this note we extend to the spatio‐temporal setting a method proposed by Baddeley et al. [Statistica Neerlandica (2000) Vol. 54, pp. 329–350] for inhomogeneous spatial point process data, and apply the resulting estimator to data on the spatio‐temporal distribution of human Campylobacter infections in an area of north‐west England.

Number of times cited according to CrossRef: 58

  • Nonparametric spatiotemporal analysis of violent crime. A case study in the Rio de Janeiro metropolitan area, Spatial Statistics, 10.1016/j.spasta.2020.100431, (100431), (2020).
  • Developments in statistical inference when assessing spatiotemporal disease clustering with the tau statistic, Spatial Statistics, 10.1016/j.spasta.2020.100438, (100438), (2020).
  • Large-scale modelling and forecasting of ambulance calls in northern Sweden using spatio-temporal log-Gaussian Cox processes, Spatial Statistics, 10.1016/j.spasta.2020.100471, (100471), (2020).
  • Adjusting the Knox test by accounting for spatio-temporal crime risk heterogeneity to analyse near-repeats, European Journal of Criminology, 10.1177/1477370820905106, (147737082090510), (2020).
  • Analysis of tornado reports through replicated spatiotemporal point patterns, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12375, 69, 1, (3-23), (2019).
  • Relationships between invasive plant species occurrence and socio-economic variables in urban green spaces of southeastern British Columbia, Canada, Urban Forestry & Urban Greening, 10.1016/j.ufug.2019.126527, (126527), (2019).
  • Spatio-temporal point patterns on linear networks: Pseudo-separable intensity estimation, Spatial Statistics, 10.1016/j.spasta.2019.100400, (100400), (2019).
  • Some properties of local weighted second-order statistics for spatio-temporal point processes, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-019-01748-1, (2019).
  • Structured Space-Sphere Point Processes and K-Functions, Methodology and Computing in Applied Probability, 10.1007/s11009-019-09712-w, (2019).
  • First and second-order characteristics of spatio-temporal point processes on linear networks, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1694524, (1-28), (2019).
  • Second‐order analysis of marked inhomogeneous spatiotemporal point processes: Applications to earthquake data, Scandinavian Journal of Statistics, 10.1111/sjos.12367, 46, 3, (661-685), (2018).
  • Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-018-1579-0, 32, 12, (3525-3539), (2018).
  • Spatial Dispersion and Point Data, Spatial Ecology and Conservation Modeling, 10.1007/978-3-030-01989-1, (101-132), (2018).
  • A multi-scale area-interaction model for spatio-temporal point patterns, Spatial Statistics, 10.1016/j.spasta.2018.06.001, 26, (38-55), (2018).
  • Nonparametric indices of dependence between components for inhomogeneous multivariate random measures and marked sets, Scandinavian Journal of Statistics, 10.1111/sjos.12331, 45, 4, (985-1015), (2018).
  • A second-order test to detect spatio-temporal anisotropic effects in point patterns, Statistics, 10.1080/02331888.2018.1469633, 52, 4, (717-733), (2018).
  • Testing for local structure in spatiotemporal point pattern data, Environmetrics, 10.1002/env.2463, 29, 5-6, (2017).
  • A first‐order, ratio‐based nonparametric separability test for spatiotemporal point processes, Environmetrics, 10.1002/env.2482, 29, 1, (2017).
  • An adaptive method for clustering spatio‐temporal events, Transactions in GIS, 10.1111/tgis.12312, 22, 1, (323-347), (2017).
  • Spatiotemporal Point Pattern Analysis and Modeling, Encyclopedia of GIS, 10.1007/978-3-319-17885-1, (2161-2168), (2017).
  • Discovering non-compliant window co-occurrence patterns, GeoInformatica, 10.1007/s10707-016-0289-3, 21, 4, (829-866), (2017).
  • Accounting for Spatiotemporal Inhomogeneity of Urban Crime in China, Papers in Applied Geography, 10.1080/23754931.2016.1268969, 3, 2, (196-205), (2017).
  • Asymptotic properties of the minimum contrast estimators for projections of inhomogeneous space-time shot-noise Cox processes, Applications of Mathematics, 10.1007/s10492-016-0138-6, 61, 4, (387-411), (2016).
  • Model-based testing for space–time interaction using point processes: An application to psychiatric hospital admissions in an urban area, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2016.03.002, 17, (15-25), (2016).
  • Discussion of “Spatial statistics: Marks, maps and shapes”, Quality Engineering, 10.1080/08982112.2015.1100460, 28, 1, (96-97), (2016).
  • Statistical analysis of spatially homogeneous dynamic agent-based processes using functional time series analysis, Spatial Statistics, 10.1016/j.spasta.2016.06.002, 17, (199-219), (2016).
  • The cylindrical $K$-function and Poisson line cluster point processes, Biometrika, 10.1093/biomet/asw044, 103, 4, (937-954), (2016).
  • Accelerating the discovery of space-time patterns of infectious diseases using parallel computing, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2016.05.002, 19, (10-20), (2016).
  • Spatio-temporal point process statistics: A review, Spatial Statistics, 10.1016/j.spasta.2016.10.002, 18, (505-544), (2016).
  • Point Pattern, Modelling Human Behaviour in Landscapes, 10.1007/978-3-319-29538-1_7, (129-147), (2016).
  • Parameter Estimation for Inhomogeneous Space‐Time Shot‐Noise Cox Point Processes, Scandinavian Journal of Statistics, 10.1111/sjos.12222, 43, 4, (939-961), (2016).
  • Spatio-Temporal Configurations of Human-Caused Fires in Spain through Point Patterns, Forests, 10.3390/f7090185, 7, 12, (185), (2016).
  • Measuring Progress on the Control of Porcine Reproductive and Respiratory Syndrome (PRRS) at a Regional Level: The Minnesota N212 Regional Control Project (Rcp) as a Working Example, PLOS ONE, 10.1371/journal.pone.0149498, 11, 2, (e0149498), (2016).
  • Summary statistics for inhomogeneous marked point processes, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-015-0515-z, 68, 4, (905-928), (2015).
  • Spatio-Temporal Point Pattern Analysis and Modeling, Encyclopedia of GIS, 10.1007/978-3-319-23519-6, (1-8), (2015).
  • Discovering Non-compliant Window Co-Occurrence Patterns: A Summary of Results, Advances in Spatial and Temporal Databases, 10.1007/978-3-319-22363-6_21, (391-410), (2015).
  • A ‐function for Inhomogeneous Spatio‐temporal Point Processes, Scandinavian Journal of Statistics, 10.1111/sjos.12123, 42, 2, (562-579), (2014).
  • Second‐order analysis of anisotropic spatiotemporal point process data, Statistica Neerlandica, 10.1111/stan.12046, 69, 1, (49-66), (2014).
  • Modelling of the spatio-temporal distribution of rat sightings in an urban environment, Spatial Statistics, 10.1016/j.spasta.2014.03.005, 9, (192-206), (2014).
  • Adoption of cropping sequences in northeast Montana: A spatio-temporal analysis, Agriculture, Ecosystems & Environment, 10.1016/j.agee.2014.07.022, 197, (77-87), (2014).
  • Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis, Regional Science and Urban Economics, 10.1016/j.regsciurbeco.2014.10.001, 49, (298-304), (2014).
  • Local Clustering in Spatio-Temporal Point Patterns, Mathematics of Planet Earth, 10.1007/978-3-642-32408-6_40, (171-174), (2014).
  • Point Processes, Spatial‐Temporal, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (2014).
  • Characterizing configurations of fire ignition points through spatiotemporal point processes, Natural Hazards and Earth System Sciences Discussions, 10.5194/nhessd-2-2891-2014, 2, 4, (2891-2911), (2014).
  • Functional summary statistics for the Johnson–Mehl model, Journal of Statistical Computation and Simulation, 10.1080/00949655.2013.850691, 85, 5, (899-916), (2013).
  • Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes, Methodology and Computing in Applied Probability, 10.1007/s11009-013-9324-0, 16, 2, (433-449), (2013).
  • Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes, Methodology and Computing in Applied Probability, 10.1007/s11009-013-9358-3, 16, 2, (411-431), (2013).
  • The Application of M-Function Analysis to the Geographical Distribution of Earthquake Sequence, Classification and Data Mining, 10.1007/978-3-642-28894-4_32, (271-278), (2013).
  • Spatial Point Pattern Analysis, Applied Spatial Data Analysis with R, 10.1007/978-1-4614-7618-4, (173-211), (2013).
  • Testing the weak stationarity of a spatio-temporal point process, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-012-0597-6, 27, 2, (517-524), (2012).
  • Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance, Journal of the American Statistical Association, 10.1080/01621459.2011.644496, 107, 497, (93-101), (2012).
  • Earthquake Modelling at the Country Level Using Aggregated Spatio-Temporal Point Processes, Mathematical Geosciences, 10.1007/s11004-011-9380-3, 44, 3, (309-326), (2012).
  • Clusters of firms in an inhomogeneous space: The high-tech industries in Milan, Economic Modelling, 10.1016/j.econmod.2011.01.012, 29, 1, (3-11), (2012).
  • Aspects of second‐order analysis of structured inhomogeneous spatio‐temporal point processes, Statistica Neerlandica, 10.1111/j.1467-9574.2012.00526.x, 66, 4, (472-491), (2012).
  • A J–function for inhomogeneous point processes, Statistica Neerlandica, 10.1111/j.1467-9574.2011.00482.x, 65, 2, (183-201), (2011).
  • Spatio-temporal epidemiology of Campylobacter jejuni enteritis, in an area of Northwest England, 2000–2002, Epidemiology and Infection, 10.1017/S0950268810000488, 138, 10, (1384-1390), (2010).
  • Second-Order Analysis of the Spatio-temporal Distribution of Human Campylobacteriosis in Preston, Lancashire, geoENV VII – Geostatistics for Environmental Applications, 10.1007/978-90-481-2322-3_9, (99-106), (2010).
  • Point Processes, Spatial‐Temporal , Encyclopedia of Environmetrics, 10.1002/9780470057339, (2006).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.