Testing for a break in persistence under long‐range dependencies
Abstract
Abstract. We show that tests for a break in the persistence of a time series in the classical I(0)/I(1) framework have serious size distortions when the actual data‐generating process (DGP) exhibits long‐range dependencies. We prove that the limiting distribution of a CUSUM of squares‐based test depends on the true memory parameter if the DGP exhibits long memory. We propose adjusted critical values for the test and give finite sample response curves that allow easy implementation of the test by the practitioner and also ease in computing the relevant critical values. We furthermore prove the consistency of the test for a simple breakpoint estimator also under long memory. We show that the test has satisfying power properties when the correct critical values are used.
Citing Literature
Number of times cited according to CrossRef: 49
- Simon Wingert, Mwasi Paza Mboya, Philipp Sibbertsen, Distinguishing between breaks in the mean and breaks in persistence under long memory, Economics Letters, 10.1016/j.econlet.2020.109338, 193, (109338), (2020).
- Zhanshou Chen, Yanting Xiao, Fuxiao Li, Monitoring memory parameter change-points in long-memory time series, Empirical Economics, 10.1007/s00181-020-01840-4, (2020).
- Guillermo Ferreira, Jorge Mateu, Jose A. Vilar, Joel Muñoz, Bootstrapping regression models with locally stationary disturbances, TEST, 10.1007/s11749-020-00721-3, (2020).
- Fabrizio Iacone, Štěpána Lazarová, Semiparametric Detection of Changes in Long Range Dependence, Journal of Time Series Analysis, 10.1111/jtsa.12448, 40, 5, (693-706), (2019).
- Kai Wenger, Janis Becker, memochange: An R package for estimation procedures and tests for persistent time series, Journal of Open Source Software, 10.21105/joss.01820, 4, 43, (1820), (2019).
- Duc Binh Benno Nguyen, Marcel Prokopczuk, Philipp Sibbertsen, The memory of stock return volatility: Asset pricing implications, Journal of Financial Markets, 10.1016/j.finmar.2019.01.002, (2019).
- Christoph Wegener, Tobias Basse, Philipp Sibbertsen, Duc Khuong Nguyen, Liquidity risk and the covered bond market in times of crisis: empirical evidence from Germany, Annals of Operations Research, 10.1007/s10479-019-03326-8, (2019).
- Frederik Kunze, Tobias Basse, Christoph Wegener, Markus Spiwoks, The Emergence of the RMB: A 'New Normal' for China's Exchange Rate System?, SSRN Electronic Journal, 10.2139/ssrn.3183770, (2018).
- undefined 윤병조, A Study on Structural Break and Persistence of Asian Government Bonds, Korean Journal of Financial Engineering, 10.35527/kfedoi.2018.17.1.005, 17, 1, (95-121), (2018).
- José Carlos Vides, Jesús Iglesias, Antonio A. Golpe, The Term Structure Under Non-linearity Assumptions: New Methods in Time Series, New Methods in Fixed Income Modeling, 10.1007/978-3-319-95285-7_7, (117-136), (2018).
- Hao Jin, Yanru Yao, Liping Yang, Testing for changes heavy index under infinite variance observations, Journal of Physics: Conference Series, 10.1088/1742-6596/1053/1/012120, 1053, (012120), (2018).
- Uwe Hassler, Bibliography, Time Series Analysis with Long Memory in View, undefined, (245-265), (2018).
- Jorge M. L. Andraz, Raúl F. C. Guerreiro, Paulo M. M. Rodrigues, Persistence of travel and leisure sector equity indices, Empirical Economics, 10.1007/s00181-017-1276-8, 54, 4, (1801-1825), (2017).
- Giorgio Canarella, Stephen M. Miller, Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration, Journal of Economics and Business, 10.1016/j.jeconbus.2017.05.002, 92, (45-62), (2017).
- Mario Gruppe, Tobias Basse, Meik Friedrich, Carsten Lange, Interest rate convergence, sovereign credit risk and the European debt crisis: a survey, The Journal of Risk Finance, 10.1108/JRF-01-2017-0013, 18, 4, (432-442), (2017).
- Siew-Voon Soon, Ahmad Zubaidi Baharumshah, Nurul Sima Mohamad Shariff, The persistence in real interest rates: Does it solve the intertemporal consumption behavior puzzle?, Journal of International Financial Markets, Institutions and Money, 10.1016/j.intfin.2017.08.009, 50, (36-51), (2017).
- Robinson Kruse, Daniel Ventosa-Santaulària, Antonio E. Noriega, Changes in persistence, spurious regressions and the Fisher hypothesis, Studies in Nonlinear Dynamics & Econometrics, 10.1515/snde-2015-0062, 21, 3, (2017).
- Zhanshou Chen, Yuhong Xing, Fuxiao Li, Sieve bootstrap monitoring for change from short to long memory, Economics Letters, 10.1016/j.econlet.2015.12.023, 140, (53-56), (2016).
- Giorgio Canarella, Stephen M. Miller, Inflation persistence and structural breaks, Journal of Economic Studies, 10.1108/JES-10-2015-0190, 43, 6, (980-1005), (2016).
- Christoph Wegener, Christian Spreckelsen, Tobias Basse, Hans‐Jörg Mettenheim, Forecasting Government Bond Yields with Neural Networks Considering Cointegration, Journal of Forecasting, 10.1002/for.2385, 35, 1, (86-92), (2015).
- Juan Carlos Cuestas, Luis A. Gil‐Alana, Paulo José Regis, The Sustainability of European External Debt: What have We Learned?, Review of International Economics, 10.1111/roie.12175, 23, 3, (445-468), (2015).
- Michael Frömmel, Robinson Kruse, Interest rate convergence in the EMS prior to European Monetary Union, Journal of Policy Modeling, 10.1016/j.jpolmod.2015.08.002, 37, 6, (990-1004), (2015).
- Cindy Shin-Huei Wang, Yi Meng Xie, Structural Change and Monitoring Tests, Handbook of Financial Econometrics and Statistics, 10.1007/978-1-4614-7750-1, (873-902), (2015).
- Katarzyna Łasak, Carlos Velasco, Fractional Cointegration Rank Estimation, Journal of Business & Economic Statistics, 10.1080/07350015.2014.945589, 33, 2, (241-254), (2014).
- Zhanshou Chen, Monitoring Change in Persistence Against the Null of Difference-Stationarity in Infinite Variance Observations, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2013.765469, 44, 1, (71-87), (2014).
- Luis F. Martins, Paulo M.M. Rodrigues, Testing for persistence change in fractionally integrated models: An application to world inflation rates, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.07.021, 76, (502-522), (2014).
- Philipp Sibbertsen, Christoph Wegener, Tobias Basse, Testing for a break in the persistence in yield spreads of EMU government bonds, Journal of Banking & Finance, 10.1016/j.jbankfin.2014.01.003, 41, (109-118), (2014).
- Stefano Grassi, Paolo Santucci de Magistris, When long memory meets the Kalman filter: A comparative study, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.10.018, 76, (301-319), (2014).
- Uwe Hassler, Paulo M.M. Rodrigues, Antonio Rubia, Persistence in the banking industry: Fractional integration and breaks in memory, Journal of Empirical Finance, 10.1016/j.jempfin.2014.03.004, 29, (95-112), (2014).
- Katarzyna Lasak, Carlos Velasco, Fractional Cointegration Rank Estimation, SSRN Electronic Journal, 10.2139/ssrn.2395195, (2014).
- Yunfeng Yang, Hao Jin, Ratio Tests for Persistence Change with Heavy Tailed Observations, Journal of Networks, 10.4304/jnw.9.6.1409-1415, 9, 6, (2014).
- Uwe Hassler, Barbara Meller, Detecting multiple breaks in long memory the case of U.S. inflation, Empirical Economics, 10.1007/s00181-013-0691-8, 46, 2, (653-680), (2013).
- Remigijus Leipus, Donatas Surgailis, Asymptotics of partial sums of linear processes with changing memory parameter*, Lithuanian Mathematical Journal, 10.1007/s10986-013-9203-y, 53, 2, (196-219), (2013).
- Peiyan Qi, Zi Jin, Zheng Tian, Zhanshou Chen, Monitoring persistent change in a heavy-tailed sequence with polynomial trends, Journal of the Korean Statistical Society, 10.1016/j.jkss.2013.02.004, 42, 4, (497-506), (2013).
- Frédéric Lavancier, Remigijus Leipus, Anne Philippe, Donatas Surgailis, DETECTION OF NONCONSTANT LONG MEMORY PARAMETER, Econometric Theory, 10.1017/S0266466613000303, 29, 5, (1009-1056), (2013).
- Guglielmo Maria Caporale, Luis A. Gil-Alana, Long memory in US real output per capita, Empirical Economics, 10.1007/s00181-012-0559-3, 44, 2, (591-611), (2012).
- Michael Frömmel, Robinson Kruse, Testing for a rational bubble under long memory, Quantitative Finance, 10.1080/14697688.2011.578151, 12, 11, (1723-1732), (2012).
- Robinson Kruse, Philipp Sibbertsen, Long memory and changing persistence, Economics Letters, 10.1016/j.econlet.2011.10.026, 114, 3, (268-272), (2012).
- Peiyan Qi, Zheng Tian, Xifa Duan, undefined, 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 10.1109/FSKD.2012.6234076, (1023-1027), (2012).
- Zhanshou Chen, Zi Jin, Zheng Tian, Peiyan Qi, Bootstrap testing multiple changes in persistence for a heavy-tailed sequence, Computational Statistics & Data Analysis, 10.1016/j.csda.2012.01.011, 56, 7, (2303-2316), (2012).
- Zhanshou Chen, Zheng Tian, Chunhui Zhao, Monitoring persistence change in infinite variance observations, Journal of the Korean Statistical Society, 10.1016/j.jkss.2011.06.001, 41, 1, (61-73), (2012).
- Jiyeon Lee, Okyoung Na, Sangyeol Lee, Constancy test for FARIMA long memory processes, Journal of the Korean Statistical Society, 10.1016/j.jkss.2010.09.001, 40, 2, (161-172), (2011).
- Uwe Hassler, Barbara Meller, Detecting Multiple Breaks in Long Memory: The Case of U.S. inflation, SSRN Electronic Journal, 10.2139/ssrn.1349129, (2011).
- Stefano Grassi, Paolo Santucci de Magistris, When Long Memory Meets the Kalman Filter: A Comparative Study, SSRN Electronic Journal, 10.2139/ssrn.1815065, (2011).
- Philipp Sibbertsen, Juliane Willert, Testing for a break in persistence under long-range dependencies and mean shifts, Statistical Papers, 10.1007/s00362-010-0342-5, 53, 2, (357-370), (2010).
- Uwe Hassler, Jan Scheithauer, Detecting changes from short to long memory, Statistical Papers, 10.1007/s00362-009-0292-y, 52, 4, (847-870), (2009).
- Ulrike Busch, Dieter Nautz, Controllability and Persistence of Money Market Rates along the Yield Curve: Evidence from the Euro Area, German Economic Review, 10.1111/j.1468-0475.2009.00480.x, 11, 3, (367-380), (2009).
- Michael Froemmel, Robinson Kruse, Interest Rate Convergence in the EMS Prior to European Monetary Union, SSRN Electronic Journal, 10.2139/ssrn.1413110, (2009).
- Dominique Guegan, A Meta-Distribution for Non-Stationary Samples, SSRN Electronic Journal, 10.2139/ssrn.1413111, (2009).




