Semiparametric Regression of Multidimensional Genetic Pathway Data: Least‐Squares Kernel Machines and Linear Mixed Models
Abstract
Summary We consider a semiparametric regression model that relates a normal outcome to covariates and a genetic pathway, where the covariate effects are modeled parametrically and the pathway effect of multiple gene expressions is modeled parametrically or nonparametrically using least‐squares kernel machines (LSKMs). This unified framework allows a flexible function for the joint effect of multiple genes within a pathway by specifying a kernel function and allows for the possibility that each gene expression effect might be nonlinear and the genes within the same pathway are likely to interact with each other in a complicated way. This semiparametric model also makes it possible to test for the overall genetic pathway effect. We show that the LSKM semiparametric regression can be formulated using a linear mixed model. Estimation and inference hence can proceed within the linear mixed model framework using standard mixed model software. Both the regression coefficients of the covariate effects and the LSKM estimator of the genetic pathway effect can be obtained using the best linear unbiased predictor in the corresponding linear mixed model formulation. The smoothing parameter and the kernel parameter can be estimated as variance components using restricted maximum likelihood. A score test is developed to test for the genetic pathway effect. Model/variable selection within the LSKM framework is discussed. The methods are illustrated using a prostate cancer data set and evaluated using simulations.
Citing Literature
Number of times cited according to CrossRef: 173
- Kara Martinez, Arnab Maity, Robert H. Yolken, Patrick F. Sullivan, Jung‐Ying Tzeng, Robust kernel association testing (RobKAT), Genetic Epidemiology, 10.1002/gepi.22280, 44, 3, (272-282), (2020).
- Natalie C. DuPré, Yujing J. Heng, Benjamin A. Raby, Kimberly Glass, Jaime E. Hart, Jen-hwa Chu, Catherine Askew, A. Heather Eliassen, Susan E. Hankinson, Peter Kraft, Francine Laden, Rulla M. Tamimi, Involvement of fine particulate matter exposure with gene expression pathways in breast tumor and adjacent-normal breast tissue, Environmental Research, 10.1016/j.envres.2020.109535, (109535), (2020).
- Kavitha Narayanasamy, Gulam Nabi Alsath Mohammed, Kirubaveni Savarimuthu, Ramprabhu Sivasamy, Malathi Kanagasabai, A comprehensive analysis on the state‐of‐the‐art developments in reflectarray, transmitarray, and transmit‐reflectarray antennas, International Journal of RF and Microwave Computer-Aided Engineering, 10.1002/mmce.22272, 30, 9, (2020).
- Kosuke Hamazaki, Hiroyoshi Iwata, RAINBOW: Haplotype-based genome-wide association study using a novel SNP-set method, PLOS Computational Biology, 10.1371/journal.pcbi.1007663, 16, 2, (e1007663), (2020).
- Xiang Wang, Zhuozhi Liang, Jiayu Guo, Meixia Wang, Ruimei Zhu, Yuelin Li, Jiayi Zhang, Yixin Zhang, Luying Tang, Zefang Ren, Metal/metalloid levels and variation in lifetime cancer risks among tissues, Human and Ecological Risk Assessment: An International Journal, 10.1080/10807039.2020.1732188, (1-13), (2020).
- Amanda Brucker, Wenbin Lu, Rachel Marceau West, Qi-You Yu, Chuhsing Kate Hsiao, Tzu-Hung Hsiao, Ching-Heng Lin, Patrik K. E. Magnusson, Patrick F. Sullivan, Jin P. Szatkiewicz, Tzu-Pin Lu, Jung-Ying Tzeng, Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis, PLOS Computational Biology, 10.1371/journal.pcbi.1007797, 16, 5, (e1007797), (2020).
- Gulnara R. Svishcheva, A generalized model for combining dependent SNP-level summary statistics and its extensions to statistics of other levels, Scientific Reports, 10.1038/s41598-019-41827-5, 9, 1, (2019).
- Tong He, Ru Kong, Avram J. Holmes, Minh Nguyen, Mert R. Sabuncu, Simon B. Eickhoff, Danilo Bzdok, Jiashi Feng, B.T. Thomas Yeo, Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics, NeuroImage, 10.1016/j.neuroimage.2019.116276, (116276), (2019).
- Nicholas B. Larson, Jun Chen, Daniel J. Schaid, A review of kernel methods for genetic association studies, Genetic Epidemiology, 10.1002/gepi.22180, 43, 2, (122-136), (2019).
- Farouk S. Nathoo, Linglong Kong, Hongtu Zhu, A review of statistical methods in imaging genetics, Canadian Journal of Statistics, 10.1002/cjs.11487, 47, 1, (108-131), (2019).
- M. Luz Calle, Statistical Analysis of Metagenomics Data, Genomics & Informatics, 10.5808/GI.2019.17.1.e6, 17, 1, (e6), (2019).
- Elizabeth A. Gibson, Yanelli Nunez, Ahlam Abuawad, Ami R. Zota, Stefano Renzetti, Katrina L. Devick, Chris Gennings, Jeff Goldsmith, Brent A. Coull, Marianthi-Anna Kioumourtzoglou, An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length, Environmental Health, 10.1186/s12940-019-0515-1, 18, 1, (2019).
- Kyungroul Lee, Sun-Young Lee, Kangbin Yim, Machine Learning Based File Entropy Analysis for Ransomware Detection in Backup Systems, IEEE Access, 10.1109/ACCESS.2019.2931136, 7, (110205-110215), (2019).
- Vera Djordjilović, Christian M. Page, Jon Michael Gran, Therese H. Nøst, Torkjel M. Sandanger, Marit B. Veierød, Magne Thoresen, Global test for high‐dimensional mediation: Testing groups of potential mediators, Statistics in Medicine, 10.1002/sim.8199, 38, 18, (3346-3360), (2019).
- Ni Zhao, Haoyu Zhang, Jennifer J. Clark, Arnab Maity, Michael C. Wu, Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene–environment interaction effect, Biometrics, 10.1111/biom.13003, 75, 2, (625-637), (2019).
- Aaron J Molstad, Li Hsu, Wei Sun, Gaussian process regression for survival time prediction with genome-wide gene expression, Biostatistics, 10.1093/biostatistics/kxz023, (2019).
- Hyunwook Koh, Yutong Li, Xiang Zhan, Jun Chen, Ni Zhao, A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies, Frontiers in Genetics, 10.3389/fgene.2019.00458, 10, (2019).
- Elizabeth A. Gibson, Jeff Goldsmith, Marianthi-Anna Kioumourtzoglou, Complex Mixtures, Complex Analyses: an Emphasis on Interpretable Results, Current Environmental Health Reports, 10.1007/s40572-019-00229-5, (2019).
- Qi Yan, Nianjun Liu, Erick Forno, Glorisa Canino, Juan C. Celedón, Wei Chen, An integrative association method for omics data based on a modified Fisher’s method with application to childhood asthma, PLOS Genetics, 10.1371/journal.pgen.1008142, 15, 5, (e1008142), (2019).
- Li Zeng, Zhaolong Yu, Hongyu Zhao, A Pathway-Based Kernel Boosting Method for Sample Classification Using Genomic Data, Genes, 10.3390/genes10090670, 10, 9, (670), (2019).
- Matthew O. Goodman, Lori Chibnik, Tianxi Cai, Variance components genetic association test for zero‐inflated count outcomes, Genetic Epidemiology, 10.1002/gepi.22162, 43, 1, (82-101), (2018).
- Tao He, Shaoyu Li, Ping‐Shou Zhong, Yuehua Cui, An optimal kernel‐based U‐statistic method for quantitative gene‐set association analysis, Genetic Epidemiology, 10.1002/gepi.22170, 43, 2, (137-149), (2018).
- Wei Zhang, Zhen Chen, Aiyi Liu, Germaine M. Buck Louis, A weighted kernel machine regression approach to environmental pollutants and infertility, Statistics in Medicine, 10.1002/sim.8003, 38, 5, (809-827), (2018).
- Yuanlin Gu, Hua-Liang Wei, Michael M. Balikhin, Nonlinear predictive model selection and model averaging using information criteria, Systems Science & Control Engineering, 10.1080/21642583.2018.1496042, 6, 1, (319-328), (2018).
- Arnab Maity, Jing Zhao, Patrick F. Sullivan, Jung‐Ying Tzeng, Inference on phenotype‐specific effects of genes using multivariate kernel machine regression, Genetic Epidemiology, 10.1002/gepi.22096, 42, 1, (64-79), (2018).
- Shelley H. Liu, Jennifer F. Bobb, Birgit Claus Henn, Lourdes Schnaas, Martha M. Tellez‐Rojo, Chris Gennings, Manish Arora, Robert O. Wright, Brent A. Coull, Matt P. Wand, Modeling the health effects of time‐varying complex environmental mixtures: Mean field variational Bayes for lagged kernel machine regression, Environmetrics, 10.1002/env.2504, 29, 4, (2018).
- J. Tezcan, Y. Dak Hazirbaba, Q. Cheng, A kernel-based mixed effect regression model for earthquake ground motions, Advances in Engineering Software, 10.1016/j.advengsoft.2016.06.002, 120, (26-35), (2018).
- Michael C. Wu, Pei-Fen Kuan, A Guide to Illumina BeadChip Data Analysis, DNA Methylation Protocols, 10.1007/978-1-4939-7481-8_16, (303-330), (2018).
- Dustin Pluta, Zhaoxia Yu, Tong Shen, Chuansheng Chen, Gui Xue, Hernando Ombao, Statistical methods and challenges in connectome genetics, Statistics & Probability Letters, 10.1016/j.spl.2018.02.048, 136, (83-86), (2018).
- Sebastian J. Teran Hidalgo, Michael C. Wu, Stephanie M. Engel, Michael R. Kosorok, Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.01.004, 122, (135-155), (2018).
- Weikang Gong, Fan Cheng, Edmund T. Rolls, Chun-Yi Zac Lo, Chu-Chung Huang, Shih-Jen Tsai, Albert C. Yang, Ching-Po Lin, Jianfeng Feng, A powerful and efficient multivariate approach for voxel-level connectome-wide association studies, NeuroImage, 10.1016/j.neuroimage.2018.12.032, (2018).
- Jie Hao, Youngsoon Kim, Tae-Kyung Kim, Mingon Kang, PASNet: pathway-associated sparse deep neural network for prognosis prediction from high-throughput data, BMC Bioinformatics, 10.1186/s12859-018-2500-z, 19, 1, (2018).
- Monika Budde, Stefanie Friedrichs, Ney Alliey-Rodriguez, Seth Ament, Judith A. Badner, Wade H. Berrettini, Cinnamon S. Bloss, William Byerley, Sven Cichon, Ashley L. Comes, William Coryell, David W. Craig, Franziska Degenhardt, Howard J. Edenberg, Tatiana Foroud, Andreas J. Forstner, Josef Frank, Elliot S. Gershon, Fernando S. Goes, Tiffany A. Greenwood, Yiran Guo, Maria Hipolito, Leroy Hood, Brendan J. Keating, Daniel L. Koller, William B. Lawson, Chunyu Liu, Pamela B. Mahon, Melvin G. McInnis, Francis J. McMahon, Sandra M. Meier, Thomas W. Mühleisen, Sarah S. Murray, Caroline M. Nievergelt, John I. Nurnberger, Evaristus A. Nwulia, James B. Potash, Danjuma Quarless, John Rice, Jared C. Roach, William A. Scheftner, Nicholas J. Schork, Tatyana Shekhtman, Paul D. Shilling, Erin N. Smith, Fabian Streit, Jana Strohmaier, Szabolcs Szelinger, Jens Treutlein, Stephanie H. Witt, Peter P. Zandi, Peng Zhang, Sebastian Zöllner, Heike Bickeböller, Peter G. Falkai, John R. Kelsoe, Markus M. Nöthen, Marcella Rietschel, Thomas G. Schulze, Dörthe Malzahn, Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder, European Neuropsychopharmacology, 10.1016/j.euroneuro.2018.10.005, (2018).
- Md. Ashad Alam, Hui-Yi Lin, Hong-Wen Deng, Vince D. Calhoun, Yu-Ping Wang, A kernel machine method for detecting higher order interactions in multimodal datasets: Application to schizophrenia, Journal of Neuroscience Methods, 10.1016/j.jneumeth.2018.08.027, 309, (161-174), (2018).
- Jennifer A. Sinnott, Tianxi Cai, Pathway aggregation for survival prediction via multiple kernel learning, Statistics in Medicine, 10.1002/sim.7681, 37, 16, (2501-2515), (2018).
- Shelley H. Liu, Jennifer F. Bobb, Birgit Claus Henn, Chris Gennings, Lourdes Schnaas, Martha Tellez‐Rojo, David Bellinger, Manish Arora, Robert O. Wright, Brent A. Coull, Bayesian varying coefficient kernel machine regression to assess neurodevelopmental trajectories associated with exposure to complex mixtures, Statistics in Medicine, 10.1002/sim.7947, 37, 30, (4680-4694), (2018).
- Jennifer F. Bobb, Birgit Claus Henn, Linda Valeri, Brent A. Coull, Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression, Environmental Health, 10.1186/s12940-018-0413-y, 17, 1, (2018).
- Lin Zhang, Inyoung Kim, Semiparametric Bayesian kernel survival model for evaluating pathway effects, Statistical Methods in Medical Research, 10.1177/0962280218797360, (096228021879736), (2018).
- Jian Xiao, Li Chen, Stephen Johnson, Yue Yu, Xianyang Zhang, Jun Chen, Predictive Modeling of Microbiome Data Using a Phylogeny-Regularized Generalized Linear Mixed Model, Frontiers in Microbiology, 10.3389/fmicb.2018.01391, 9, (2018).
- Qiong Xia, Xianpeng Wang, Lixin Tang, Furnace operation optimization with hybrid model based on mechanism and data analytics, Soft Computing, 10.1007/s00500-018-3519-9, (2018).
- Nadezhda M. Belonogova, Gulnara R. Svishcheva, James F. Wilson, Harry Campbell, Tatiana I. Axenovich, Weighted functional linear regression models for gene-based association analysis, PLOS ONE, 10.1371/journal.pone.0190486, 13, 1, (e0190486), (2018).
- Zhonghua Liu, Xihong Lin, A Geometric Perspective on the Power of Principal Component Association Tests in Multiple Phenotype Studies, Journal of the American Statistical Association, 10.1080/01621459.2018.1513363, (1-32), (2018).
- Yang Shi, Mengqiao Wang, Weiping Shi, Ji-Hyun Lee, Huining Kang, Hui Jiang, Accurate and efficient estimation of small P -values with the cross-entropy method: applications in genomic data analysis , Bioinformatics, 10.1093/bioinformatics/bty1005, (2018).
- Ni Zhao, Xiang Zhan, Yen‐Tsung Huang, Lynn M Almli, Alicia Smith, Michael P. Epstein, Karen Conneely, Michael C. Wu, Kernel machine methods for integrative analysis of genome‐wide methylation and genotyping studies, Genetic Epidemiology, 10.1002/gepi.22100, 42, 2, (156-167), (2017).
- Zaili Fang, Inyoung Kim, Jeesun Jung, Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-017-0317-2, 23, 1, (129-152), (2017).
- Shelley H Liu, Jennifer F Bobb, Kyu Ha Lee, Chris Gennings, Birgit Claus Henn, David Bellinger, Christine Austin, Lourdes Schnaas, Martha M Tellez-Rojo, Howard Hu, Robert O Wright, Manish Arora, Brent A Coull, Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures, Biostatistics, 10.1093/biostatistics/kxx036, 19, 3, (325-341), (2017).
- Junghi Kim, Wei Pan, Adaptive testing for multiple traits in a proportional odds model with applications to detect SNP‐brain network associations, Genetic Epidemiology, 10.1002/gepi.22033, 41, 3, (259-277), (2017).
- Garret Vo, Debdeep Pati, Sparse Additive Gaussian Process with Soft Interactions, Open Journal of Statistics, 10.4236/ojs.2017.74039, 07, 04, (567-588), (2017).
- Bin Zhu, Nan Song, Ronglai Shen, Arshi Arora, Mitchell J. Machiela, Lei Song, Maria Teresa Landi, Debashis Ghosh, Nilanjan Chatterjee, Veera Baladandayuthapani, Hongyu Zhao, Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers, Scientific Reports, 10.1038/s41598-017-17031-8, 7, 1, (2017).
- Kai Wang, Conditional asymptotic inference for the kernel association test, Bioinformatics, 10.1093/bioinformatics/btx511, 33, 23, (3733-3739), (2017).
- Angel D. Davalos, Thomas J. Luben, Amy H. Herring, Jason D. Sacks, Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures, Annals of Epidemiology, 10.1016/j.annepidem.2016.11.016, 27, 2, (145-153.e1), (2017).
- Jian Xiao, Jun Chen, Phylogeny-Based Kernels with Application to Microbiome Association Studies, New Advances in Statistics and Data Science, 10.1007/978-3-319-69416-0_13, (217-237), (2017).
- Weiming Zhang, Debashis Ghosh, On the use of kernel machines for Mendelian randomization, Quantitative Biology, 10.1007/s40484-017-0124-3, 5, 4, (368-379), (2017).
- Xiang Zhan, Ni Zhao, Anna Plantinga, Timothy A. Thornton, Karen N. Conneely, Michael P. Epstein, Michael C. Wu, Powerful Genetic Association Analysis for Common or Rare Variants with High-Dimensional Structured Traits, Genetics, 10.1534/genetics.116.199646, 206, 4, (1779-1790), (2017).
- Linda Valeri, Maitreyi M. Mazumdar, Jennifer F. Bobb, Birgit Claus Henn, Ema Rodrigues, Omar I.A. Sharif, Molly L. Kile, Quazi Quamruzzaman, Sakila Afroz, Mostafa Golam, Citra Amarasiriwardena, David C. Bellinger, David C. Christiani, Brent A. Coull, Robert O. Wright, The Joint Effect of Prenatal Exposure to Metal Mixtures on Neurodevelopmental Outcomes at 20–40 Months of Age: Evidence from Rural Bangladesh, Environmental Health Perspectives, 10.1289/EHP614, 125, 6, (067015), (2017).
- Chang Xu, Sounak Chakraborty, Bayesian kernel machine models for testing genetic pathway effects in prostate cancer prognosis, Statistical Analysis and Data Mining: The ASA Data Science Journal, 10.1002/sam.11349, 10, 6, (378-392), (2017).
- Arnab Maity, Nonparametric functional concurrent regression models, WIREs Computational Statistics , 10.1002/wics.1394, 9, 2, (2017).
- Wei Dai, Ming Yang, Chaolong Wang, Tianxi Cai, Sequence robust association test for familial data, Biometrics, 10.1111/biom.12643, 73, 3, (876-884), (2017).
- Xiang Zhan, Anna Plantinga, Ni Zhao, Michael C. Wu, A fast small‐sample kernel independence test for microbiome community‐level association analysis, Biometrics, 10.1111/biom.12684, 73, 4, (1453-1463), (2017).
- Anna Plantinga, Xiang Zhan, Ni Zhao, Jun Chen, Robert R. Jenq, Michael C. Wu, MiRKAT-S: a community-level test of association between the microbiota and survival times, Microbiome, 10.1186/s40168-017-0239-9, 5, 1, (2017).
- Chenyang Tao, Thomas E. Nichols, Xue Hua, Christopher R.K. Ching, Edmund T. Rolls, Paul M. Thompson, Jianfeng Feng, Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications, NeuroImage, 10.1016/j.neuroimage.2016.08.027, 144, (35-57), (2017).
- Dominik Reinhold, Jarrett D. Morrow, Sean Jacobson, Junxiao Hu, Benjamin Ringel, Max A. Seibold, Craig P. Hersh, Katerina J. Kechris, Russell P. Bowler, Meta-analysis of peripheral blood gene expression modules for COPD phenotypes, PLOS ONE, 10.1371/journal.pone.0185682, 12, 10, (e0185682), (2017).
- Yunxuan Jiang, Karen N. Conneely, Michael P. Epstein, Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees, Statistics in Biosciences, 10.1007/s12561-017-9197-9, (2017).
- Matey Neykov, Boris P Hejblum, Jennifer A Sinnott, Kernel machine score test for pathway analysis in the presence of semi-competing risks, Statistical Methods in Medical Research, 10.1177/0962280216653427, 27, 4, (1099-1114), (2016).
- Xiang Zhan, Xingwei Tong, Ni Zhao, Arnab Maity, Michael C. Wu, Jun Chen, A small‐sample multivariate kernel machine test for microbiome association studies, Genetic Epidemiology, 10.1002/gepi.22030, 41, 3, (210-220), (2016).
- Weiming Zhang, Michael P. Epstein, Tasha E. Fingerlin, Debashis Ghosh, Links Between the Sequence Kernel Association and the Kernel-Based Adaptive Cluster Tests, Statistics in Biosciences, 10.1007/s12561-016-9175-7, 9, 1, (246-258), (2016).
- Ming Li, Jingyun Li, Zihuai He, Qing Lu, John S. Witte, Stewart L. Macleod, Charlotte A. Hobbs, Mario A. Cleves, Testing Allele Transmission of an SNP Set Using a Family‐Based Generalized Genetic Random Field Method, Genetic Epidemiology, 10.1002/gepi.21970, 40, 4, (341-351), (2016).
- Qianchuan He, Tianxi Cai, Yang Liu, Ni Zhao, Quaker E. Harmon, Lynn M. Almli, Elisabeth B. Binder, Stephanie M. Engel, Kerry J. Ressler, Karen N. Conneely, Xihong Lin, Michael C. Wu, Prioritizing individual genetic variants after kernel machine testing using variable selection, Genetic Epidemiology, 10.1002/gepi.21993, 40, 8, (722-731), (2016).
- Lulu Cheng, Inyoung Kim, Herbert Pang, Bayesian Semiparametric Model for Pathway-Based Analysis with Zero-Inflated Clinical Outcomes, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-016-0264-3, 21, 4, (641-662), (2016).
- Stefanie Friedrichs, Dörthe Malzahn, Elizabeth W. Pugh, Marcio Almeida, Xiao Qing Liu, Julia N. Bailey, Filtering genetic variants and placing informative priors based on putative biological function, BMC Genetics, 10.1186/s12863-015-0313-x, 17, S2, (2016).
- Yaohui Zeng, Patrick Breheny, Overlapping Group Logistic Regression with Applications to Genetic Pathway Selection, Cancer Informatics, 10.4137/CIN.S40043, 15, (CIN.S40043), (2016).
- Mert R. Sabuncu, Tian Ge, Avram J. Holmes, Jordan W. Smoller, Randy L. Buckner, Bruce Fischl, Morphometricity as a measure of the neuroanatomical signature of a trait, Proceedings of the National Academy of Sciences, 10.1073/pnas.1604378113, 113, 39, (E5749-E5756), (2016).
- Kai Wang, Boosting the Power of the Sequence Kernel Association Test by Properly Estimating Its Null Distribution, The American Journal of Human Genetics, 10.1016/j.ajhg.2016.05.011, 99, 1, (104-114), (2016).
- Huanhuan Zhu, Zhenchuan Wang, Xuexia Wang, Qiuying Sha, A novel statistical method for rare-variant association studies in general pedigrees, BMC Proceedings, 10.1186/s12919-016-0029-6, 10, S7, (2016).
- Chenyang Tao, Jianfeng Feng, Nonlinear association criterion, nonlinear Granger causality and related issues with applications to neuroimage studies, Journal of Neuroscience Methods, 10.1016/j.jneumeth.2016.01.003, 262, (110-132), (2016).
- Xiang Zhan, Debashis Ghosh, A novel power-based approach to Gaussian kernel selection in the kernel-based association test, Statistical Methodology, 10.1016/j.stamet.2016.09.003, 33, (180-191), (2016).
- Omer Weissbrod, Dan Geiger, Saharon Rosset, Multikernel linear mixed models for complex phenotype prediction, Genome Research, 10.1101/gr.201996.115, 26, 7, (969-979), (2016).
- Hongmei Zhang, Arnab Maity, Hasan Arshad, John Holloway, Wilfried Karmaus, Variable selection in semi-parametric models, Statistical Methods in Medical Research, 10.1177/0962280213499679, 25, 4, (1736-1752), (2016).
- Kento Kodama, Hiroto Saigo, KDSNP: A kernel-based approach to detecting high-order SNP interactions, Journal of Bioinformatics and Computational Biology, 10.1142/S0219720016440030, 14, 05, (1644003), (2016).
- Jianping Sun, Karim Oualkacha, Vincenzo Forgetta, Hou-Feng Zheng, J Brent Richards, Antonio Ciampi, Celia MT Greenwood, A method for analyzing multiple continuous phenotypes in rare variant association studies allowing for flexible correlations in variant effects, European Journal of Human Genetics, 10.1038/ejhg.2016.8, 24, 9, (1344-1351), (2016).
- Junghi Kim, Yiwei Zhang, Wei Pan, Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data, Genetics, 10.1534/genetics.115.186502, 203, 2, (715-731), (2016).
- Jingchunzi Shi, Seunggeun Lee, A novel random effect model for GWAS meta‐analysis and its application to trans‐ethnic meta‐analysis, Biometrics, 10.1111/biom.12481, 72, 3, (945-954), (2016).
- Zaili Fang, Inyoung Kim, Patrick Schaumont, Flexible variable selection for recovering sparsity in nonadditive nonparametric models, Biometrics, 10.1111/biom.12518, 72, 4, (1155-1163), (2016).
- G. R. Svishcheva, N. M. Belonogova, T. I. Axenovich, Functional linear models for region-based association analysis, Russian Journal of Genetics, 10.1134/S1022795416100124, 52, 10, (1094-1100), (2016).
- Shabnam Azadeh, Brian P. Hobbs, Liangsuo Ma, David A. Nielsen, F. Gerard Moeller, Veerabhadran Baladandayuthapani, Integrative Bayesian analysis of neuroimaging-genetic data with application to cocaine dependence, NeuroImage, 10.1016/j.neuroimage.2015.10.033, 125, (813-824), (2016).
- T. Ge, J.W. Smoller, M.R. Sabuncu, Kernel machine regression in neuroimaging genetics, Machine Learning and Medical Imaging, 10.1016/B978-0-12-804076-8.00002-5, (31-68), (2016).
- Xiang Zhan, Santhosh Girirajan, Ni Zhao, Michael C. Wu, Debashis Ghosh, A novel copy number variants kernel association test with application to autism spectrum disorders studies, Bioinformatics, 10.1093/bioinformatics/btw500, (btw500), (2016).
- Shiyuan He, Wenlong Yuan, Jianhua Z. Huang, James Long, Lucas M. Macri, PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS, The Astronomical Journal, 10.3847/0004-6256/152/6/164, 152, 6, (164), (2016).
- William Terry, Hongmei Zhang, Arnab Maity, Hasan Arshad, Wilfried Karmaus, Unified variable selection in semi-parametric models, Statistical Methods in Medical Research, 10.1177/0962280215610928, 26, 6, (2821-2831), (2015).
- Jun Chen, Wenan Chen, Ni Zhao, Michael C. Wu, Daniel J. Schaid, Small Sample Kernel Association Tests for Human Genetic and Microbiome Association Studies, Genetic Epidemiology, 10.1002/gepi.21934, 40, 1, (5-19), (2015).
- Il-Youp Kwak, Wei Pan, Adaptive gene- and pathway-trait association testing with GWAS summary statistics, Bioinformatics, 10.1093/bioinformatics/btv719, 32, 8, (1178-1184), (2015).
- Sen Zhao, Ali Shojaie, A significance test for graph‐constrained estimation, Biometrics, 10.1111/biom.12418, 72, 2, (484-493), (2015).
- Dehan Kong, Arnab Maity, Fang‐Chi Hsu, Jung‐Ying Tzeng, Testing and estimation in marker‐set association study using semiparametric quantile regression kernel machine, Biometrics, 10.1111/biom.12438, 72, 2, (364-371), (2015).
- K. Alaine Broadaway, Richard Duncan, Karen N. Conneely, Lynn M. Almli, Bekh Bradley, Kerry J. Ressler, Michael P. Epstein, Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits, Genetic Epidemiology, 10.1002/gepi.21901, 39, 5, (366-375), (2015).
- Rachel Marceau, Wenbin Lu, Shannon Holloway, Michèle M. Sale, Bradford B. Worrall, Stephen R. Williams, Fang‐Chi Hsu, Jung‐Ying Tzeng, A Fast Multiple‐Kernel Method With Applications to Detect Gene‐Environment Interaction, Genetic Epidemiology, 10.1002/gepi.21909, 39, 6, (456-468), (2015).
- Baolin Wu, James S. Pankow, Weihua Guan, Sequence Kernel Association Analysis of Rare Variant Set Based on the Marginal Regression Model for Binary Traits, Genetic Epidemiology, 10.1002/gepi.21913, 39, 6, (399-405), (2015).
- Xiang Zhan, Debashis Ghosh, Incorporating auxiliary information for improved prediction using combination of kernel machines, Statistical Methodology, 10.1016/j.stamet.2014.08.001, 22, (47-57), (2015).
- Tian Ge, Thomas E. Nichols, Debashis Ghosh, Elizabeth C. Mormino, Jordan W. Smoller, Mert R. Sabuncu, A kernel machine method for detecting effects of interaction between multidimensional variable sets: An imaging genetics application, NeuroImage, 10.1016/j.neuroimage.2015.01.029, 109, (505-514), (2015).
- Jessica Minnier, Ming Yuan, Jun S. Liu, Tianxi Cai, Risk Classification With an Adaptive Naive Bayes Kernel Machine Model, Journal of the American Statistical Association, 10.1080/01621459.2014.908778, 110, 509, (393-404), (2015).
- Xiang Zhan, Andrew D Patterson, Debashis Ghosh, Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data, BMC Bioinformatics, 10.1186/s12859-015-0506-3, 16, 1, (2015).
- See more




