Population Intervention Causal Effects Based on Stochastic Interventions
Abstract
Summary Estimating the causal effect of an intervention on a population typically involves defining parameters in a nonparametric structural equation model (Pearl, 2000, Causality: Models, Reasoning, and Inference) in which the treatment or exposure is deterministically assigned in a static or dynamic way. We define a new causal parameter that takes into account the fact that intervention policies can result in stochastically assigned exposures. The statistical parameter that identifies the causal parameter of interest is established. Inverse probability of treatment weighting (IPTW), augmented IPTW (A‐IPTW), and targeted maximum likelihood estimators (TMLE) are developed. A simulation study is performed to demonstrate the properties of these estimators, which include the double robustness of the A‐IPTW and the TMLE. An application example using physical activity data is presented.
Citing Literature
Number of times cited according to CrossRef: 38
- Iván Díaz, Nima S. Hejazi, Causal mediation analysis for stochastic interventions, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12362, 82, 3, (661-683), (2020).
- Edward H. Kennedy, Efficient Nonparametric Causal Inference with Missing Exposure Information, The International Journal of Biostatistics, 10.1515/ijb-2019-0087, 0, 0, (2020).
- Sean McGrath, Victoria Lin, Zilu Zhang, Lucia C. Petito, Roger W. Logan, Miguel A. Hernán, Jessica G. Young, gfoRmula: An R Package for Estimating the Effects of Sustained Treatment Strategies via the Parametric g-formula, Patterns, 10.1016/j.patter.2020.100008, (100008), (2020).
- Jacqueline A. Mauro, Edward H. Kennedy, Daniel Nagin, Instrumental variable methods using dynamic interventions, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12563, 183, 4, (1523-1551), (2020).
- Nima Hejazi, David Benkeser, txshift: Efficient estimation of the causal effects of stochastic interventions in R, Journal of Open Source Software, 10.21105/joss.02447, 5, 54, (2447), (2020).
- Lan Wen, Jessica G. Young, James M. Robins, Miguel A. Hernán, Parametric g‐formula implementations for causal survival analyses, Biometrics, 10.1111/biom.13321, 0, 0, (2020).
- Gabriel Schamberg, William Chapman, Shang-Ping Xie, Todd P. Coleman, Direct and Indirect Effects—An Information Theoretic Perspective, Entropy, 10.3390/e22080854, 22, 8, (854), (2020).
- Noémi Kreif, Oleg Sofrygin, Julie A. Schmittdiel, Alyce S. Adams, Richard W. Grant, Zheng Zhu, Mark J. Laan, Romain Neugebauer, Exploiting nonsystematic covariate monitoring to broaden the scope of evidence about the causal effects of adaptive treatment strategies, Biometrics, 10.1111/biom.13271, 0, 0, (2020).
- Nima S. Hejazi, Mark J. van der Laan, Holly E. Janes, Peter B. Gilbert, David C. Benkeser, Efficient nonparametric inference on the effects of stochastic interventions under two‐phase sampling, with applications to vaccine efficacy trials, Biometrics, 10.1111/biom.13375, 0, 0, (2020).
- Hooman Kamel, Peter M. Okin, Alexander E. Merkler, Babak B. Navi, Thomas R. Campion, Richard B. Devereux, Iván Díaz, Jonathan W. Weinsaft, Jiwon Kim, Relationship between left atrial volume and ischemic stroke subtype, Annals of Clinical and Translational Neurology, 10.1002/acn3.50841, 6, 8, (1480-1486), (2019).
- Jessica G. Young, Roger W. Logan, James M. Robins, Miguel A. Hernán, Inverse Probability Weighted Estimation of Risk Under Representative Interventions in Observational Studies, Journal of the American Statistical Association, 10.1080/01621459.2018.1469993, 114, 526, (938-947), (2018).
- Edward H. Kennedy, Scott Lorch, Dylan S. Small, Robust causal inference with continuous instruments using the local instrumental variable curve, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12300, 81, 1, (121-143), (2018).
- Laura B. Balzer, Mark J. van der Laan, Maya L. Petersen, Mark J. van der Laan, Sherri Rose, Data-Adaptive Estimation in Cluster Randomized Trials, Targeted Learning in Data Science, 10.1007/978-3-319-65304-4_13, (195-215), (2018).
- Sherri Rose, Mark J. van der Laan, Mark J. van der Laan, Sherri Rose, Research Questions in Data Science, Targeted Learning in Data Science, 10.1007/978-3-319-65304-4_1, (3-14), (2018).
- Iván Díaz, Mark J. van der Laan, Mark J. van der Laan, Sherri Rose, Stochastic Treatment Regimes, Targeted Learning in Data Science, 10.1007/978-3-319-65304-4_14, (219-232), (2018).
- Jacqueline Mauro, Edward Kennedy, Daniel Nagin, Learning the Effects of Things We Can't Change: Dynamic Interventions on Instrumental Variables, SSRN Electronic Journal, 10.2139/ssrn.3201199, (2018).
- Kara E. Rudolph, Oleg Sofrygin, Wenjing Zheng, Mark J. van der Laan, Robust and Flexible Estimation of Stochastic Mediation Effects: A Proposed Method and Example in a Randomized Trial Setting, Epidemiologic Methods, 10.1515/em-2017-0007, 7, 1, (2018).
- Edward H. Kennedy, Nonparametric causal effects based on incremental propensity score interventions, Journal of the American Statistical Association, 10.1080/01621459.2017.1422737, (0-0), (2018).
- Daniel Westreich, From Patients to Policy, Epidemiology, 10.1097/EDE.0000000000000648, 28, 4, (525-528), (2017).
- Oleg Sofrygin, Mark J. van der Laan, Semi-Parametric Estimation and Inference for the Mean Outcome of the Single Time-Point Intervention in a Causally Connected Population, Journal of Causal Inference, 10.1515/jci-2016-0003, 5, 1, (2017).
- Xiaojuan Li, Jessica G. Young, Sengwee Toh, Estimating Effects of Dynamic Treatment Strategies in Pharmacoepidemiologic Studies with Time-Varying Confounding: a Primer, Current Epidemiology Reports, 10.1007/s40471-017-0124-x, 4, 4, (288-297), (2017).
- S. Bailly, R. Pirracchio, J. F. Timsit, What’s new in the quantification of causal effects from longitudinal cohort studies: a brief introduction to marginal structural models for intensivists, Intensive Care Medicine, 10.1007/s00134-015-3919-6, 42, 4, (576-579), (2015).
- Iván Díaz, Michael Rosenblum, Targeted Maximum Likelihood Estimation using Exponential Families, The International Journal of Biostatistics, 10.1515/ijb-2014-0039, 11, 2, (2015).
- Romain Neugebauer, Julie A. Schmittdiel, Zheng Zhu, Jeremy A. Rassen, John D. Seeger, Sebastian Schneeweiss, High‐dimensional propensity score algorithm in comparative effectiveness research with time‐varying interventions, Statistics in Medicine, 10.1002/sim.6377, 34, 5, (753-781), (2015).
- Iván Díaz, Alan Hubbard, Anna Decker, Mitchell Cohen, Variable Importance and Prediction Methods for Longitudinal Problems with Missing Variables, PLOS ONE, 10.1371/journal.pone.0120031, 10, 3, (e0120031), (2015).
- Mark J. van der Laan, Richard J. C. M. Starmans, Entering the Era of Data Science: Targeted Learning and the Integration of Statistics and Computational Data Analysis, Advances in Statistics, 10.1155/2014/502678, 2014, (1-19), (2014).
- Ashley I. Naimi, Erica E. M. Moodie, Nathalie Auger, Jay S. Kaufman, Stochastic Mediation Contrasts in Epidemiologic Research: Interpregnancy Interval and the Educational Disparity in Preterm Delivery, American Journal of Epidemiology, 10.1093/aje/kwu138, 180, 4, (436-445), (2014).
- D. Westreich, From Exposures to Population Interventions: Pregnancy and Response to HIV Therapy, American Journal of Epidemiology, 10.1093/aje/kwt328, 179, 7, (797-806), (2014).
- Maya L. Petersen, Mark J. van der Laan, Causal Models and Learning from Data, Epidemiology, 10.1097/EDE.0000000000000078, 25, 3, (418-426), (2014).
- Jessica G. Young, Miguel A. Hernán, James M. Robins, Identification, Estimation and Approximation of Risk under Interventions that Depend on the Natural Value of Treatment Using Observational Data, Epidemiologic Methods, 10.1515/em-2012-0001, 3, 1, (1-19), (2014).
- Mark J. van der Laan, Causal Inference for a Population of Causally Connected Units, Journal of Causal Inference, 10.1515/jci-2013-0002, 2, 1, (13-74), (2014).
- Thomas Clasen, Annette Pruss‐Ustun, Colin D. Mathers, Oliver Cumming, Sandy Cairncross, John M. Colford, Estimating the impact of unsafe water, sanitation and hygiene on the global burden of disease: evolving and alternative methods, Tropical Medicine & International Health, 10.1111/tmi.12330, 19, 8, (884-893), (2014).
- Hannah H. Leslie, Deborah A. Karasek, Laura F. Harris, Emily Chang, Naila Abdulrahim, May Maloba, Megan J. Huchko, Cervical Cancer Precursors and Hormonal Contraceptive Use in HIV-Positive Women: Application of a Causal Model and Semi-Parametric Estimation Methods, PLoS ONE, 10.1371/journal.pone.0101090, 9, 6, (e101090), (2014).
- Alan Hubbard, Ivan Diaz Munoz, Anna Decker, John B. Holcomb, Martin A. Schreiber, Eileen M. Bulger, Karen J. Brasel, Erin E. Fox, Deborah J. del Junco, Charles E. Wade, Mohammad H. Rahbar, Bryan A. Cotton, Herb A. Phelan, John G. Myers, Louis H. Alarcon, Peter Muskat, Mitchell J. Cohen, Time-dependent prediction and evaluation of variable importance using superlearning in high-dimensional clinical data, Journal of Trauma and Acute Care Surgery, 10.1097/TA.0b013e3182914553, 75, (S53-S60), (2013).
- Iván Díaz, Mark J. van der Laan, Assessing the Causal Effect of Policies: An Example Using Stochastic Interventions, The International Journal of Biostatistics, 10.1515/ijb-2013-0014, 9, 2, (2013).
- Iván Díaz, Mark J. van der Laan, Sensitivity Analysis for Causal Inference under Unmeasured Confounding and Measurement Error Problems, The International Journal of Biostatistics, 10.1515/ijb-2013-0004, 9, 2, (2013).
- Iván Díaz, Mark J. van der Laan, Targeted Data Adaptive Estimation of the Causal Dose–Response Curve, Journal of Causal Inference, 10.1515/jci-2012-0005, 1, 2, (171-192), (2013).
- S. Haneuse, A. Rotnitzky, Estimation of the effect of interventions that modify the received treatment, Statistics in Medicine, 10.1002/sim.5907, 32, 30, (5260-5277), (2013).




